Physics update for polarized beams

- Running scenarios for the ILC
- Physics examples
- Conclusions

Impact of positron polarization

- Current physics case for e+e-:
 - Higgs precision physics
 - Top precision physics
 - Light SUSY/DM searches
 - BSM detection in general, complementary to LHC
- well motivated

- Four categories for 'gain in polarization':
 - Enhancement of signal, changing background "higher lumi"
 - Reducing polarization uncertainty ... "higher acc"
 - Provides more observables"unique"
 - Since polarization=chirality: extracts new characteristics of interactions
 ``unique''

- save physics!

- In the following:
 - Only very few physics examples

(more in Eur.Phys.J. C75 (2015) 'LCReview', Phys. Rept. 460 (2008) 'Power'

Today only top and Higgs

Concentrate on top and Higgs physics

- Higgs couplings in general (Yukawa, trilinear etc.)
 - Deviations from SM expected to be small
- Top couplings (form factors, etc.)
 - > Top and Higgs intimately coupled!
- What has been promised by the (I)LC community?
 - ➤ Luminosity running scenarios, Barklow ea. 1506.07830 'Parameter Group'
 - > Precision promises, Fujii ea. 1506.05992 'Physics Panel'
- Status top and Higgs physics at LHC
 - > HL-LHC expectations relevant
- What do we lose if no polarisation, or if only P_e available?
 - ➤ How much longer runs needed to compensate lumi if no P_{e+}?
 - ➤ How much loss in precision if no P_{e+}?

Polarization basics for category 1+2

- With both beams polarized we gain in
 - Higher effective polarization (higher effect of polarization)

$$P_{eff} := (P_{e} - P_{e+})/(1 - P_{e} - P_{e+})$$

Higher effective luminosity (higher fraction of collisions)

$$L_{eff}/L=1-P_{e-}P_{e+}$$

\sqrt{s}	$P(e^-)$	$P(e^+)$	$P_{ m eff}$	$\mathcal{L}_{ ext{eff}}$ /L	$\frac{1}{x}\Delta P_{\mathrm{eff}}/P_{\mathrm{eff}}$
total range	∓80%	0%	∓80%	1	1
250 GeV	∓80%	$\pm 40\%$	$\mp 91\%$	1.3	0.43
$\geq 350 \text{ GeV}$	$\mp 80\%$	$\pm 55\%$	$\mp 94\%$	1.4	0.30

higher accuracv!

higher rates!

Relevant for all V,A processes (most SM, some BSM)

$$\sigma$$
 (Pe-,Pe+)=(1-Pe- Pe+) σ_{unpol} [1-P_{eff} A_{LR}]

Running scenarios

- Running time based on 20 years physics data, lumi upgrade included after 8 (10) years
- Dedicated lumi fraction on $\sqrt{s}=250$, 350 and 500 GeV_{T. Barklow ea,:1506.07830}

		\int	$\mathscr{L}dt$ [fb ⁻¹]
\sqrt{s}	G-20	H-20	I-20
250 GeV	500	2000	500
350 GeV	200	200	1700
500 GeV	5000	4000	4000

- Most popular 'H-20': in total 6200 fb⁻¹ (2032, >2040 HL-ILC, until 2052)
 - Physics results improve/complement LHC, HL-LHC results!
- Prospects LHC: 300 fb-1 in 2023

HL-LHC: 3000 fb-1 in 2037 (start HL-LHC: 2027)

Assumed helicity configurations

Different scenarios for polarization configurations

_			fraction with $sgn(P(e^-), P(e^+)) =$		T. Barklow ea, 1506.0783	
		(-,+)	(+,-)	(-,-)	(+,+)	
	\sqrt{s}	[%]	[%]	[%]	[%]	
_	250 GeV	67.5	22.5	5	5	
	$350\mathrm{GeV}$	67.5	22.5	5	5	
	500 GeV	40	40	10	10	

- At \sqrt{s} = 250 and 350 GeV: mainly SM expected
 - Only 10% running time in (-,-) and (+,+) to control systematics
- At \sqrt{s} =500 GeV: more like-sign data taking motivated
- sensitivity to new physics and interactions
- Assumptions: P(e-)=80%, P(e+)=30%
- -> P_{eff} =89%, L_{eff}/L =1.2, $\triangle P_{eff}/P_{eff}$ =0.5
- Flipping frequency: randomized on bunch train time-scales, average flipping frequency adjusted to w.r.t. the desired fraction

Why is helicity flipping required?

Gain in effective lumi lost if no flipping available

e- trains
$$\begin{pmatrix} - \\ + \\ + \end{pmatrix}$$
 + $\begin{pmatrix} + \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} - \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} + \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} - \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} + \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} - \\ + \\ + \end{pmatrix}$ +

- 50% spent to 'inefficient' helicity pairing (most SM, BSM)
- Similar flip frequency for both beams ~ pulse-per-pulse
- Gain in ΔP_{eff} remains, but flipping required to understand:
 - Systematics and correlations P_e x P_{e+}
- Spin rotator before DR and spinflipper has been set-up!
 - See TDR, Sect. 3.1 and CR08 (approved)

L. Malysheva '13

Contact also B. List for details

Status Higgs

- Higgs within achievable accuracy at LHC: SM-like
 - Could be the only SM Higgs (what's about DM? gauge unification?)
 - Could be a SUSY Higgs (one has to be close to a SM-like one)
 - Could be a composite state

Supersymmetry (MSSM)

Composite Higgs (MCHM5)

ILC 250+500 LumiUp

What did we promise?

Bechtle ea, '14

- Precision of 1-2% achievable in Higgs couplings !!!
- Crucial input from ILC
 - total cross section σ(HZ)
 - Has to be measured at √s=250GeV
 - Input parameter for all further Higgs studies (Higgs width etrc.)!
- Lots of improvement if only σ(HZ) from ILC is added

Process: Higgs Strahlung

- $\sqrt{\text{s}=250 \text{ GeV}}$: dominant process
- Why crucial?
 - allows model-independent access!

– Absolute measurement of Higgs cross section $\sigma(HZ)$ and g_{HZZ} : crucial input for all further Higgs measurement!

	ILC500	ILC500 LumiUP
Δm_{H}	25 MeV	15 MeV
$\Delta g_{HZZ}/g_{HZZ}$	0.58 %	0.31 %

- Allows access to H-> invisible/exotic
- Allows with measurement of Γ^h_{tot} absolute measurement of BRs!

Higgs sector@250 GeV

- What if no polarization / no P_{e+} available?
 - Higgsstrahlung dominant

$$\sigma_{\text{pol}}/\sigma_{\text{unpol}}\sim$$
 (1-0.151 P_{eff}) * L_{eff}/L

With
$$P_{e+}$$
=0%: $\sigma_{pol}/\sigma_{unpol} \sim 1.13$
With P_{e+} =40%: $\sigma_{pol}/\sigma_{unpol} \sim 1.55$

(about 37% increase comp. to 0%

- Background: mainly ZZ (if leptonic), WW (if hadronic)
- S/B:
 1.14 (+,0)
 4.35 (+,0)

 1.20 (+,-)
 12.6 (+,-)

 S/√B:
 0.99 (+,0)
 1.95 (+,0)

 1.22 (+,-)
 3.98 (+,-)
- \triangleright Loss if no P_{e+} : ~20% ~ factor 2
- Physics Panel used both beams polarized! P_{e+} is important ...

Trilinear Higgs couplings

- Very important for establishing Higgs mechanism!
 - LHC estimates:

no official LHC number provided!

- about $\Delta\lambda_{HHH}$ ~32% at HL-LHC (14 TeV, 3000fb⁻¹)
- At LC: Very challenging (small rates ~0.1-0.2fb, lots of dilution+backg.)

C. Duerig, EPS'15

In total: about 50% enhancement comp. to P_{e+}=0%!

Trilinear Higgs couplings

Very important for establishing Higgs mechanism!

In total: about 50% enhancement comp. to P_{e+}=0%!

Top Yukawa coupling

top-Yukawa coupling crucial:

since strongest coupling to Higgs sector

C. Duerig, EPS'15

- g_{ttH} offers new surprises, needs model-independent measurement

$\Delta \rm g_{Htt}/\rm g_{Htt}$	ILC500	ILC500 LumiUP
500 GeV	18 %	6.3 %
550 GeV	~ 9 %	~ 3 %

- Numbers very ambitious
- Used so far: (±80,-+30)

increasing √s by 10%, precision improves by factor two for same integrated luminosity

- Further improvement with (+-80,-+60):
 - S increases by 24% if from (80,30) to (80,60)
 - S/ \sqrt{B} increases by 50%
- If no P_{e+}: S decreases by about 20%

Top Yukawa coupling

top-Yukawa coupling crucial:

since strongest coupling to Higgs sector

Fujii ea, arXiv: 1506.05992

S/√B increas

 $\sqrt{s} = 550 \text{ GeV}$ better precision on g_{Htt}

- If no P_{e+:}: S d∈
- by factor 4 enhanced cross section
- main backgrounds decrease

Top electroweak coupling

- Test of the chiral structure of top couplings
 - -Cross section ~maximal at this energy

R. Poeschl, EPS15, see also EPJC 75 (2015)

- Use different observables
 - -Cross section, A_{FB}, helicity angle
- Couplings
 - -measurable at %-level thanks to:
 - -the different observables
 - -runs with different (+-),(-+)
 - -P_{e+} important to fit independently!

➤ Result substantially improves best LHC result!

Conclusions

- Beam polarization gives 'added-value' to ILC
 - Crucial 'new' analysis tools compared to LHC numbers
- Strong precision promises have been made......
 - Require both beams polarized from the beginning
 - Well thought scenarios for different configurations/flipping
- P_{e-} and P_{e+} important at \sqrt{s} = 250 GeV (Higgs!) and beyond
 - Essential to match precision promises/expectations!
- At higher energies required as well for precision, chirality etc
 - > Precision allows sensitivity to beyond SM!
- Not covered today: polarization to determine properties of new particles directly, as chiral quantum numbers, CP quantities, large extra dimensions etc. as well as GigaZ,
 - please see LCReview and POWER report for more example!s

Impact of P(e+)

Statistics

And gain in precision

$$\Delta A_{LR}/A_{LR} = 0.3$$

$$\Delta A_{LR}/A_{LR} = 0.27$$

$$\Delta A_{LR}/A_{LR} = 0.5$$

gain: factor-3

factor>3

factor~2

NO gain with only pol. e- (even if '100% ')!

Chirality proof of sleptons

- Test of chirality of new particles via beam polarization
 - Selectrons = SUSY partner of electrons sel, ,sel,

Even with $P_{e^-} \ge +90\%$, one can't disentangle the pairs $\tilde{e}_{\rm L}^+ \tilde{e}_{\rm R}^-$ and $\tilde{\mathbf{e}}_{R}^{+}\tilde{\mathbf{e}}_{R}^{-}$ ': Ratio of the cross sections \approx constant.

P_{e+} required!