Update from the LCC Parameter Group

- ILC @ DESY
- **General Project Meeting**
 - April 10, 2015
 - J.List (DESY)
- On behalf of the LCC Parameter Group

History...

 Jan / Feb 2014: Parameter group established (N. Walker, J. Gao, K. Yokoya, J.Brau, T.Barklow, K.Fujii, JL)

> Original charge: develop running scenarios
 for a *staged* ILC starting operation at 250 GeV

- May 2014: First public presentation of intermediate status and community feed-back at AWLC14
- October 2014: presentation at LCWS14, report submitted to the LCB / LCC
 - => "the contruction of the full 500 GeV ILC from the start remains the preferred plan of the LCC"
 - => since then: new running scenarios, new version of report...

Overview

- Higgs coupings: some basic mechanisms
- A side remark about CEPC
- Running scenarios for ILC500
 - The scenarios
 - Physics

Higgs Physics

Higgs coupling: special case ZHH

HZZ coupling:

- naively expect best performance at 250 GeV
- but 350 GeV wins in fit since HWW also contributes via global fit

similar: H->ττ (absolute value of coupling, CP properties not yet studied!)

Higgs couplings: special case HWW

HWW coupling:

- naively expect best performance at highest energy
- but again 350 GeV wins in fit since HZZ also contributes via fit

Candidate Reasons to prefer 250 over 350 GeV

- Higgs mass from leptonic recoil
 - need $\delta m_{H} < 20-30$ MeV
 - doable at high E_{CM} from H->bb & Co?
 - probably, but currently not yet proven
 - only proven alternative: leptonic recoil => ~3ab⁻¹ @ 250 GeV
- Higgs -> invisible (95%CL limit)
 - new full sim studies coming in, but still work in progress
 - best sensitivity at 250 GeV with P=(+80%,-30%) (!)
 - impact from global fit?
- Higgs -> ττ: CP properties of H-fermion coupling
 - existing studies rely on Z to reconstruct angles in Higgs restframe => 250 GeV
 - but: in principle Higgs restframe not needed => could also use WW-fusion => higher E_{CM} ???

Higgs->invisible (95% CL)

	previous P=(-80%,+30%)	Mark Thomson	Akimasa Ishikawa	A.I. P=(+80%,-30%)
250 fb-1 @ 250 GeV	0.95%		0.95%	0.69%
350 fb-1 @ 350 GeV	1.5% (Extrap)	1.2%	1.5%	1.4%
500 fb-1 @ 500 GeV	3.2% (Extrap)		3.2%	2.3%

However, from global fit:

- Γ_H better at higher energies
- so BR(H->inv) should behave the same in fit?
- however: remember there is a tiny, tiny modeldependence!

What about CEPC?

- Chinese Electron Positron Collider assumes:
 - instantaneous lumi: 1.8 2.0 x 1034 /cm² /s x 2 IPs
 - integrated luminosity at 250 GeV from ICFA-Seminar presentation: 5 ab-1
 - no official power estimate yet, but priv. comm:
 - total power consumption (prel.): several 100 MW

How does this compare to ILC at 250 GeV?

	CEPC	5 Hz, 1315 bunches	10 Hz, 1315 bunches	10 Hz, 2625 bunches
inst. lumi [10 ³⁴ / cm ² / s]	3.6 - 4	0.75	1.5	3
total power [MW]	498	100	160 ?	190

⇒ ILC: 75% of CEPC lumi for ~40% of CEPC power - not a bad deal !!!

[also interesting: how do CEPC and FCC-ee numbers compare? Are their assumptions consistent?]

=> we don't have a scientific problem

– but a communication / presentation problem!

But for the fun of it...

But fot the fun of it

HWW difficult with 250 GeV only

ttH: 500 GeV vs 550 GeV

- 550 GeV gives a factor 2.4 improvement over 500 GeV (for same integrated luminosity)
- below 500 GeV: sensitivity **vanishes** quickly!

ttH: 550 GeV nearly as good as 1 TeV

Running scenarios for ILC500

- Consider 3 scenarios of ~20 years *realtime*
 - ramp-up of luminosity at beginning and after changes to the machine
 - Shutdown for **luminosity upgrade**
 - Stick with "baseline" energies (500,350,250 GeV)
 - Start at 500 GeV:
 - 1. How much luminosity at 250/350 GeV?
 - 2. When to do luminosity upgrade?
 - Use spare RF&Cryo power to run at higher rep rate:
 500 GeV: 5 Hz , 250 GeV: 10 Hz, 350 GeV: 7 Hz
- Compare to the scenario assumed in the ILC Higgs Whitepaper for Snowmass

The scenarios

- G-20: focus on 500 GeV data taking, lumiUP @ 10y
- H-20/I-20: include extended run at 250/350 GeV (nearly) without reduction of 500 GeV data due to earlier luminosity upgrade

		∫ℒdt	[fb ⁻¹]	
\sqrt{s}	G-20	H-20	I-20	Snow
250 GeV	500	2000	500	1150
350 GeV	200	200	1700	200
500 GeV	5000	4000	4000	1600

• Polarisation splittings (for all scenarios)

	fraction with $sgn(P(e^{-}), P(e^{+})) =$								
	(-,+)	(+,-)	(-,-)	(+,+)					
\sqrt{s}	[%]	[%]	[%]	[%]					
250 GeV	67.5	22.5	5	5					
350 GeV	67.5	22.5	5	5					
500 GeV	40	40	10	10					

Running Scenarios, ILC@DESY, April 10 2015

G-20 & H(I)-20

• G-20:

	\sqrt{s}	∫£dt	Lpeak	Ramp)	~ .		T	Ttot	Comment
	[GeV]	[fb ⁻¹]	$[fb^{-1}/a]$	1	2	3	4	[a]	[a]	
Physics run	500	1000	288	0.1	0.3	0.6	1.0	5.5	5.5	TDR nominal at 5 Hz
Physics run	350	200	160	1.0	1.0	1.0	1.0	1.2	6.7	TDR nominal at 5 Hz
Physics run	250	500	240	0.25	0.75	1.0	1.0	3.1	9.8	operation at 10 Hz
Shutdown							•	1.5	11.3	Luminosity upgrade
Physics run	500	4000	576	0.1	0.5	1.0	1.0	8.4	19.7	TDR lumi-up at 5 Hz

• H-20 (I-20 the same but last run at 350 GeV with 7Hz)

	\sqrt{s}	$\int \mathcal{L} dt = L_{\text{peak}}$ Ramp $T = T_{\text{to}}$	$\int \mathcal{L} dt = L_{\text{peak}}$ Ramp T	Ramp			T _{tot}	Comment		
	[GeV]	[fb ⁻¹]	$[fb^{-1}/a]$	1	2	3	4	[a]	[a]	
Physics run	500	500	288	0.1	0.3	0.6	1.0	3.7	3.7	TDR nominal at 5 Hz
Physics run	350	200	160	1.0	1.0	1.0	1.0	1.3	5.0	TDR nominal at 5 Hz
Physics run	250	500	240	0.25	0.75	1.0	1.0	3.1	8.1	operation at 10 Hz
Shutdown		•		_				1.5	9.6	Luminosity upgrade
Physics run	500	3500	576	0.1	0.5	1.0	1.0	7.4	17.0	TDR lumi-up at 5 Hz
Physics run	250	1500	480	1.0	1.0	1.0	1.0	3.2	20.2	lumi-up operation at 10 Hz

Scenario "Snow"

- Inspired by Snowmass, but
 - Added top threshold scan
 - No 1 TeV
 - Same polarisation mix as for the other scenarios (orig. Snowmass was *only* LR)

	\sqrt{s}	∫£dt	Lpeak	Ram	Ramp			T	T _{tot}	Comment
	[GeV]	[fb ⁻¹]	[fb ⁻¹ /a]	1	2	3	4	[a]	[a]	
Physics run	250	250	120	0.1	0.3	0.6	1.0	4.1	4.1	TDR nominal at 5 Hz
Physics run	500	500	288	1.0	1.0	1.0	1.0	1.7	5.8	TDR nominal at 5 Hz
Physics run	350	200	160	1.0	1.0	1.0	1.0	1.3	7.1	TDR nominal at 5 Hz
Shutdown								1.5	8.6	Luminosity upgrade
Physics run	250	900	480	0.1	0.5	1.0	1.0	3.0	11.8	lumi-up operation at 10 Hz
Physics run	500	1100	576	1.0	1.0	1.0	1.0	2.0	13.8	TDR lumi-up at 5 Hz

G-20

Integrated Luminosities [fb]

H-20

Integrated Luminosities [fb]

I-20

Integrated Luminosities [fb]

Snow

Integrated Luminosities [fb]

Big questions for running scenarios

- Is it possible to measure the total ZH cross-section in a sufficiently model-indepent way at ECM > 250 GeV from hadronic recoil?
 - residual decay-mode dependency of selection?
 - migration from off-shell region (M > 150 GeV) into signal region?
- Do we have alternatives to the leptonic recoil at 250 GeV for measuring $\rm M_{\rm H}$ at the 20 MeV level?
 - Kinematic reconstruction of H->bb ?
 - Kinematic reconstruction of H->WW* ?

HWW coupling – log scale

Hbb coupling – log scale

Htt coupling – lin scale

Higgs Self-coupling

Top EW Couplings & Sensitivity to KK Scale

Top EW Couplings & Sensitivity to KK Scale

Top EW Couplings & Sensitivity to KK Scale

Dark Matter Sensitivity (M=10 GeV, Vector)

Dark Matter Sensitivity – only LR data

Running Scenarios, ILC@DESY, April 10 2015

J.List

39

Conclusions I – Early Performance

Early Physics performance significantly improves when starting at 500 GeV (wrt start at 250/350 GeV):

- ttH, triple-Higgs-coupling: unreachable at < 500 GeV
- H -> $\mu\mu$, $\gamma\gamma$, gg, cc, bb: substantially better
- ΓH, H -> ττ, HWW: about equal
- HZZ: worse, ultimately needs some 250/350 GeV data
- mH: probably fine with 500 GeV as well. If not: needs *lots* of 250 GeV data

Plus: Searches, Triple & Quartic Gauge couplings, top couplings

Starting operation at 350 GeV might be a fall-back, but *not* the "publicity scenario"!

Conclusions II – Final Performance

No striking differences in *final* Higgs physics performance, except:

- ttH & Triple-Higgs-coupling: prefer maximum lumi at 500GeV, will be superseeded by few years at 1 TeV! (but note: ttH @ 550 GeV nearly as good as at 1 TeV...)
- HZZ: ultimately profits from lots of 250 or 350 GeV data
- mH: probably fine with 500 GeV as well.
 If not: needs *lots* of 250 GeV data

Balance a long run at 500 GeV vs 1 TeV upgrade ?!

What's next?

- For now:
 - suggest H-20 as baseline to PAC/LCC/LCB
 - ask for official support for the "beyond TDR" features:
 - luminosity upgrade
 - > 5 Hz running for physics (entails longer undulator instead of 10 Hz for e+ production!)
- If successful, this will be a significant improvement of the physics potential of the machine
- in parallel we should
 - understand better amount of data required at 250 / 350 GeV
 - be prepared to scale results to higher luminosities!
 - take care about systematic uncertainties, exp & theo!

The wider perspective

.... my private view...

Running Scenarios, ILC@DESY, April 10 2015