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Discovery of a signal at about 125 GeV in 
the Higgs searches at ATLAS and CMS:

2

⇒

Higgs physics after the discovery

The spectacular discovery of a signal at ∼125 GeV in the 
Higgs searches at the LHC marks the start of a new era of 
particle physics

Higgs physics at Linear Colliders 

Higgs physics at ILC K. Desch - Higgs physics at ILC 2 
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What’s so special about a Higgs boson?          
How do elementary particles get mass?

3

How do elementary particles get mass?

The fundamental interactions of elementary particles are
described very successfully by quantum field theories that
follow an underlying symmetry principle:
“gauge invariance”

This fundamental symmetry principle requires that all the
elementary particles and force carriers should be
massless

However: W , Z, top, bottom, . . . , electron are massive,
have widely differing masses

explicit mass terms ⇔ breaking of gauge invariance

How can elementary particles acquire mass without spoiling
the fundamental symmetries of nature?

– p. 18



Higgs physics: what do we need to know?, Georg Weiglein, 121st ILC@DESY Project Meeting, DESY, Hamburg, 04 / 2015

The Brout-Englert-Higgs (BEH) mechanism

4

The Higgs mechanism

⇒ Need additional concept:

Higgs mechanism, spontaneous electroweak symmetry
breaking:

New field postulated that fills all of the space: the Higgs field

Higgs potential
⇒ non-trivial structure of the vacuum postulated!

Gauge-invariant mass terms from interaction with Higgs field

Spontaneous symmetry breaking: the interaction obeys the
symmetry principle, but not the state of lowest energy
Very common in nature, e.g. ferromagnet

Higgs physics after the discovery, Georg Weiglein, Physikalisches Kolloquium, Würzburg, 10 / 2012 – p.10
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The BEH mechanism in the Standard Model (SM)

5

The Higgs mechanism in the Standard Model (SM)

Minimum of the potential at 〈Φ〉 =
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⇒ Spontaneous breaking of the gauge symmetry
Higgs physics after the discovery, Georg Weiglein, Physikalisches Kolloquium, Würzburg, 10 / 2012 – p.12

BEH mechanism ⇔ non-trivial structure of the vacuum
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Couplings to bosons and fermions scale with particle masses in 
accordance with BEH mechanism                                                   
⇒ Distinction from gauge interactions (generation universality)

⇒ Strong evidence for interpretation as a Higgs boson
6
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Fig. 4.36 (Ed: Placeholder for FINAL ATLAS and CMS results)

Illustration of the mass-dependence of the Higgs couplings as determined in five-parameter
fits independently for ATLAS and CMS. For fermions, the values of the yukawa couplings,
y↵ are shown, while for vector bosons the square-root of the coupling for the HVV vertex
divided by twice the vacuum expectation value of the Higgs boson field. Particle masses
for leptons and weak boson, and the vacuum expectation value of the Higgs boson are
taken from the PDG (2014). A top-quark mass of 172.5 GeV and a running b-quark mass
of 2.763 GeV is used. Loop-induced couplings are assumed to follow the SM structure as
described in reference [64].
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Higgs discovery: the ultimate triumph for the SM?

7



Higgs physics: what do we need to know?, Georg Weiglein, 121st ILC@DESY Project Meeting, DESY, Hamburg, 04 / 2015

Higgs discovery: the ultimate triumph for the SM?

Or rather the beginning of the end of the SM?

7
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Higgs discovery: the ultimate triumph for the SM?

Or rather the beginning of the end of the SM?

One thing that we know for sure is that the discovered particle 
cannot be the Higgs boson of the SM!
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Higgs discovery: the ultimate triumph for the SM?

Or rather the beginning of the end of the SM?

One thing that we know for sure is that the discovered particle 
cannot be the Higgs boson of the SM!

The SM is incomplete (in particular, it describes only three of 
the four fundamental interactions, i.e. it does not contain 
gravity) and cannot be the ultimate theory

7
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Higgs discovery: the ultimate triumph for the SM?

Or rather the beginning of the end of the SM?

One thing that we know for sure is that the discovered particle 
cannot be the Higgs boson of the SM!

The SM is incomplete (in particular, it describes only three of 
the four fundamental interactions, i.e. it does not contain 
gravity) and cannot be the ultimate theory

In fact: from what we know so far, we cannot understand how a 
Higgs boson could be as light as the one that was discovered 
The mass should be affected by physics at high energy scales 
(e.g. Planck scale, 1019 GeV, where gravity is of similar strength 
as the other interactions)                                                         
⇒The mass should have been driven up to high scales

7
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How can a Higgs boson be as light as 125 GeV?

• A new symmetry of nature   ⟶   Supersymmetry?

• A new fundamental interaction of nature   ⟶   composite Higgs? 

• Extra dimensions of space   ⟶   impact on gravity on small scales? 

• Multiverses   ⟶   anthropic principle?

8

Answers to those questions are among the prime goals of 
the upcoming runs of the LHC and a future e+e- collider

⇒

What is the quantum structure of the universe?
Higgs particle provides access to the non-trivial structure of                                                              
the vacuum
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Higgs physics: what do we want to know?
• What is the underlying nature of the observed signal and which role 

does it play in the physics of electroweak symmetry breaking?          
Fundamental / composite? Extended Higgs sector? ...

• Are there additional Higgs states?                                                      
Could be heavier but also lighter than the state at 125 GeV

• Does the observed state unitarise WW scattering?                              
Are there signs of a new strong interaction? Resonances? ...

• Higgs self-coupling: the ``holy grail’’ of Higgs physics                         
Quantum structure of the vacuum? ...

• Does the observed signal provide access to further new physics?     
Decay into a pair of dark matter particles? ...

9
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Higgs physics: how do we find out?

• High-precision studies of the properties of the observed signal

• Search for additional Higgs states above but also below 125 GeV

• Test unitarisation in different processes

• Explore Higgs self-coupling in different ways: different processes 
have different sensitivities to new physics, H → h(125) h(125), ... 

• Explore interplay of Higgs physics and other new physics: h(125) as 
a final state in new physics processes, h(125)  → 𝛘𝛘, ...

• ...

10
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Extended Higgs sectors: possible deviations from 
the Standard Model
SUSY as a test case: well motivated, theory predictions have been 
worked out to high level of sophistication 

11

Higgs physics in Supersymmetry

“Simplest” extension of the minimal Higgs sector:

Minimal Supersymmetric Standard Model (MSSM)

Two doublets to give masses to up-type and down-type
fermions (extra symmetry forbids to use same doublet)

SUSY imposes relations between the parameters

⇒ Two parameters instead of one: tan β ≡ vu
vd
, MA (or MH±)

⇒ Upper bound on lightest Higgs mass, Mh:

Lowest order: Mh ≤MZ

Including higher-order corrections: Mh
<
∼ 135GeV

Detection of a SM-like Higgs with MH
>
∼ 135 GeV would have

unambiguously ruled out the MSSM, signal at ∼ 126 GeV is
well compatible with MSSM prediction

Physics prospects, Georg Weiglein, CMS Upgrade Week, DESY, 06 / 2013 – p. 30

Interpretation of the signal at 125 GeV within the MSSM?
(for TeV-scale stop masses)
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Interpretation of the signal in extended Higgs sectors 
(SUSY), case I: signal interpreted as light state h
• Most obvious interpretation: signal at about 125 GeV is 

interpreted as the lightest Higgs state h in the spectrum

• Additional Higgs states at higher masses

• Differences from the Standard Model (SM) could be detected 
via:

• properties of h(125): deviations in the couplings, different 
decay modes, different CP properties, ...

• detection of additional Higgs states: H, A → 𝛕𝛕, H → hh,     
H, A → 𝛘𝛘, ...

12
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Interpretation of the signal in terms of the light 
MSSM Higgs boson
• Detection of a SM-like Higgs with MH > 135 GeV would have 

unambiguously ruled out the MSSM (with TeV-scale masses)

• Signal at 125 GeV is well compatible with MSSM prediction

• Observed mass value of the signal gives rise to lower bound 
on the mass of the CP-odd Higgs:  

•                          : ``Decoupling region’’ of the MSSM, where the 
light Higgs h behaves SM-like

•      Would not expect observable deviations from the SM at the 
present level of accuracy

13

MA > 200 GeV

) MA � MZ

)



Higgs physics: what do we need to know?, Georg Weiglein, 121st ILC@DESY Project Meeting, DESY, Hamburg, 04 / 2015

„Required“ accuracy 

Higgs physics at ILC K. Desch - Higgs physics at ILC 32 

choose this value as a reference point, then, for tan � = 5 and taking c ' 1, the h0

couplings are approximately given by

ghV V

ghSMV V

' 1� 0.3%

✓
200 GeV
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◆
4

ghtt

ghSMtt

=
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' 1� 1.7%
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◆
2

ghbb

ghSMbb

=
gh⌧⌧

ghSM⌧⌧

' 1 + 40%

✓
200 GeV

mA

◆
2

. (13)

At the lower end of the range, the LHC experiments should see the deviation in the
hbb or h⌧⌧ coupling. However, the heavy MSSM Higgs bosons can easily be as heavy
as a TeV without fine tuning of parameters. In this case, the deviations of the gauge
and up-type fermion couplings are well below the percent level, while those of the
Higgs couplings to b and ⌧ are at the percent level,

ghbb

ghSMbb

=
gh⌧⌧

ghSM⌧⌧

' 1 + 1.7%

✓
1 TeV

mA

◆
2

. (14)

In this large-mA region of parameter space, vertex corrections from SUSY particles
are typically also at the percent level.

More general two-Higgs-doublet models follow a similar pattern, with the largest
deviation appearing in the Higgs coupling to fermion(s) that get their mass from the
Higgs doublet with the smaller vev. The decoupling with mA in fact follows the same
quantitative pattern so long as the dimensionless couplings in the Higgs potential are
not larger than O(g2), where g is the weak gauge coupling.

2.2.3 New states to solve the gauge hierarchy problem

Many models of new physics are proposed to solve the gauge hierarchy problem by
removing the quadratic divergences in the loop corrections to the Higgs field mass
term µ2. Supersymmetry and Little Higgs models provide examples. Such models
require new scalar or fermionic particles with masses below a few TeV that cancel the
divergent loop contributions to µ2 from the top quark. For this to work, the couplings
of the new states to the Higgs must be tightly constrained in terms of the top quark
Yukawa coupling. Usually the new states have the same electric and color charge as
the top quark, which implies that they will contribute to the loop-induced hgg and
h�� couplings. The new loop corrections contribute coherently with the Standard
Model loop diagrams.
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For scalar new particles (e.g., the two top squarks in the MSSM), the resulting
e↵ective hgg and h�� couplings are given by

ghgg /
����F1/2
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F
0

(mT )

���� ,
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4

3

2m2

t

m2

T

F
0

(mT )

���� . (15)

Here F
1

, F
1/2

, and F
0

are the loop factors defined in [17] for spin 1, spin 1/2, and spin
0 particles in the loop, and mT is the mass of the new particle(s) that cancels the
top loop divergence. For application to the MSSM, we have set the two top squark
masses equal for simplicity. For fermionic new particles (e.g., the top-partner in Little
Higgs models), the resulting e↵ective couplings are
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T

F
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For simplicity, we have ignored the mixing between the top and its partner. For
mh = 120–130 GeV, the loop factors are given numerically by F

1

(mW ) = 8.2–8.5
and F

1/2

(mt) = �1.4. For mT � mh, the loop factors tend to constant values,
F

1/2

(mT )! �4/3 and F
0

(mT )! �1/3.

Very generally, then, such models predict deviations of the loop-induced Higgs
couplings from top-partners of the decoupling form. Numerically, for a scalar top-
partner,

ghgg

ghSMgg

' 1 + 1.4%

✓
1 TeV

mT

◆
2

,
gh��

ghSM��

' 1� 0.4%

✓
1 TeV

mT

◆
2

, (17)

and for a fermionic top-partner,

ghgg

ghSMgg

' 1 + 2.9%

✓
1 TeV

mT

◆
2

,
gh��

ghSM��

' 1� 0.8%

✓
1 TeV

mT

◆
2

. (18)

A “natural” solution to the hierarchy problem that avoids fine tuning of the Higgs
mass parameter thus generically predicts deviations in the hgg and h�� couplings at
the few percent level due solely to loop contributions from the top-partners. These
e↵ective couplings are typically also modified by shifts in the tree-level couplings of
h to tt and WW .

The Littlest Higgs model [18,19] gives a concrete example. In this model, the one-
loop Higgs mass quadratic divergences from top, gauge, and Higgs loops are cancelled

29

by loop diagrams involving a new vector-like fermionic top-partner, new W 0 and Z 0

gauge bosons, and a triplet scalar. For a top-partner mass of 1 TeV, the new particles
in the loop together with tree-level coupling modifications combine to give [20]

ghgg

ghSMgg

= 1� (5% ⇠ 9%)

gh��

ghSM��

= 1� (5% ⇠ 6%), (19)

where the ranges correspond to varying the gauge- and Higgs-sector model parame-
ters. Note that the Higgs coupling to �� is also a↵ected by the heavy W 0 and triplet
scalars running in the loop. The tree-level Higgs couplings to tt and WW are also
modified by the higher-dimension operators arising from the nonlinear sigma model
structure of the theory.

2.2.4 Composite Higgs

Another approach to solve the hierarchy problem makes the Higgs a composite bound
state of fundamental fermions with a compositeness scale around the TeV scale. Such
models generically predict deviations in the Higgs couplings compared to the SM due
to higher-dimension operators involving the Higgs suppressed by the compositeness
scale. This leads to Higgs couplings to gauge bosons and fermions of order

ghxx

ghSMxx

' 1±O(v2/f2), (20)

where f is the compositeness scale.

As an example, the Minimal Composite Higgs model [21] predicts [22]

a ⌘ ghV V

ghSMV V

=
p

1� ⇠

c ⌘ ghff

ghSMff

=

⇢ p
1� ⇠ (MCHM4)

(1� 2⇠)/
p

1� ⇠ (MCHM5),
(21)

with ⇠ = v2/f2. Here MCHM4 refers to the fermion content of the original model
of Ref. [21], while MCHM5 refers to an alternate fermion embedding [23]. Again,
naturalness favors f ⇠ TeV, leading to

ghV V

ghSMV V
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2
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8
<

:
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⇣
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⌘
2
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1� 9%
⇣
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f

⌘
2

(MCHM5).
(22)
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Peskin et al 

The quest for identifying the underlying physics

In general 2HDM-type models one expects % level 
deviations from the SM couplings for BSM particles in 
the TeV range, e.g. 

14

⇒ Need very high precision for the couplings

           ⇒ ILC physics programme
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• If dark matter consists of one or more particles with a mass 
below about 63 GeV, then the decay of the state at 125 GeV 
into a pair of dark matter particles is kinematically open

• The detection of an invisible decay mode of the state at 125 
GeV could be a manifestation of BSM physics

• Direct search for H → invisible

• Suppression of all other branching ratios

15

Can h(125) decay into dark matter particles?
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Invisible Higgs 

Higgs physics at ILC K. Desch - Higgs physics at ILC 16 

The recoil mass technique also allows for unbiased observation 
of any non-SM decay, e.g. H!invisible: 
 
 
 
 
 
 
 
 
 
 
 
 
 
5σ observation for BR(H!inv.) = 2% (at √s=350 GeV/500 fb-1) 
<0.9% exclusion at 95% CL (c.f. <10% at HL-LHC) 
 
note: also applies to „LHC-invisible“ decays, e.g. H!gg, H!qq etc. 
 

Signal(120) 

χ 

χ 

[Schumacher] 

⇒ Unique sensitivity at the ILC!

Invisible decays
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Properties of the other Higgs states: sum rule for 
coupling to gauge bosons

In a large variety of models with extended Higgs sectors the 
squared couplings to gauge bosons fulfill a ``sum rule’’:

•The SM coupling strength is ``shared’’ between the Higgses of 
an extended Higgs sector
•ϰV ≦ 1
•The more SM-like the couplings of the state at 125 GeV turn 
out to be, the more suppressed are the couplings of the other 
Higgses to gauge bosons
•Heavy Higgses have a much smaller width than a SM-like 
Higgs of the same mass

17

X

i

g2HiV V =
�
gSMHV V

�2

⇒
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Search for non-standard heavy Higgses

18

SUSY Higgs: non-standard heavy Higgses

"Typical" features of extended Higgs sectors:

A light Higgs with SM-like properties, couples with about
SM-strength to gauge bosons

Heavy Higgs states that decouple from the gauge bosons

For “non-standard” Higgs states:

⇒ Cannot use weak-boson fusion channels for production

⇒ Possible production channels: gg → H, bb̄H, . . .

Cannot use LHC “gold plated” decay mode H → ZZ → 4µ

⇒ Search for heavy Higgs bosons H,A,H± is very different
from the SM case

Beyond the Standard Model (Higgs), Georg Weiglein, IMFP13, Santander, 05 / 2013 – p. 42

• A signal could show up in H → ZZ → 4 l as a small bump, very 
far below the expectation for a SM-like Higgs (and with a 
much smaller width)

• Particularly important search channel: H, A → 𝛕𝛕

• Non-standard search channels can play an important role:       
H → hh, H, A → 𝛘𝛘, ...

⇒
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CMS result for h, H, A → 𝛕𝛕 search

Analysis starts to 
become sensitive to 
the presence of the 
signal at 125 GeV

Searches for Higgs 
bosons of an extended 
Higgs sector need to 
test compatibility with 
the signal at 125 GeV        
(→ appropriate 
benchmark scenarios) 
and search for 
additional states

19

Search for MSSM ��ττ 

@CMSexperiment @ICHEP2014 a.david@cern.ch 

87 

!  Minimal SuperSymmetric 
Model predicts: 
!  h0, H0, A0: generically �. 
!  H+ and H-.  

!  Based on SM analysis but: 
!  Using extra b-tags 

(production). 
!  Extended to up to mττ = 1.5 

TeV: 

[CMS-PAS-HIG-13-021] 

Observation 
compatible with 
presence of SM 
Higgs boson. 

Not shown: model-independent limits on gg�� and gg��bb̅. [CMS Collaboration ’14]

⇒
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mhmod benchmark scenario

20

[M. Carena, S. Heinemeyer, O. Stål, C. Wagner, G. W. ’14]

Figure 4: Upper row: The MA–tan � plane in the mmod+
h (left) and the mmod�

h scenario
(right). The exclusion regions are shown as in Fig. 3, while the color coding in the allowed
region indicates the average total branching ratio of H and A into charginos and neutralinos.
In the lower row M2 = 2000 GeV is used, and the color coding for the branching ratios of H
and A into charginos and neutralinos is as in the upper row. The regions excluded by the
LHC searches are shown in light red in these plots. For comparison, the excluded regions
for the case M2 = 200 GeV (as given in the plots in the upper row) is overlaid (solid red).

As mentioned above, the exclusion limits obtained from the searches for heavy MSSM
Higgs bosons in the ⌧+⌧� and bb̄ final states are significantly a↵ected in parameter regions
where additional decay modes of the heavy MSSM Higgs bosons are open. In particular, the
branching ratios for the decay of H and A into charginos and neutralinos may become large
at small or moderate values of tan �, leading to a corresponding reduction of the branching
ratios into ⌧+⌧� and bb̄. In Fig. 4 we show again the mmod+

h (left) and mmod�
h (right)

14

Figure 3: The MA–tan � plane in the mmod+
h (left) and mmod�

h (right) scenarios. The colors
show exclusion regions from LEP (blue) and the LHC (red), and the favored region Mh =
125.5± 2 (3) GeV (green), see the text for details.

mmod�
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = �1.9MSUSY (FD calculation),

XMS
t = �2.2MSUSY (RG calculation),

Ab = A⌧ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (22)

Figure 3 shows the bounds on the MA–tan � parameter space in the mmod+
h (left) and

mmod�
h (right) scenarios, using the same choice of colors as in the mmax

h scenario presented
in the previous section, but from here on we show the full LHC exclusion region as solid
red only.4 As anticipated, there is a large region of parameter space at moderate and large
values of tan � where the mass of the light CP-even Higgs boson is in good agreement with
the mass value of the particle recently discovered at the LHC. Accordingly, the green area
indicating the favored region now extends over almost the whole allowed parameter space of
this scenario, with the exception of a small region at low values of tan �. From Fig. 3 one
can see that once the magnitude of Xt has been changed in order to bring the mass of the
light CP-even Higgs boson into agreement with the observed mass of the signal, the change
of sign of this parameter has a minor impact on the excluded regions.

4The light red color in Fig. 4 has a di↵erent meaning.

13

Small modification of well-known mhmax  scenario where the light Higgs h can be 
interpreted as the signal at 125 GeV over a wide range of the parameter space 
Large branching ratios into SUSY particles (right plot) and sizable BR(H → hh), 
up to 30%, for rel. small tanβ possible 
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CMS result for h, H, A → 𝛕𝛕 search
mhmod  benchmark 
scenario

Test of compatibility 
of the data to the 
signal of h, H, A 
(MSSM) compared 
to SM Higgs boson 
hypothesis

``Wedge region’’, 
where only h(125) 
can be detected; 
difficult to cover 
also with more 
luminosity 21

[CMS Collaboration ’14]

15

Figure 5 shows the expected and observed exclusion limits at the 95% CL in the mmax
h scenario

and the modified scenarios mmod+
h and mmod�

h . The allowed regions where the mass of the
MSSM scalar Higgs boson h or H is compatible with the mass of the recently discovered boson
of 125 GeV within a range of ±3 GeV are delimited by the hatched areas. Most of the MSSM
parameter space is excluded by the Higgs boson mass requirement in the mmax

h scenario, while
in the modified scenarios the exclusion is mainly concentrated at low tan b values.
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Figure 5: Expected and observed exclusion limits at 95% CL in the mA-tan b parameter space
for the MSSM mmax

h , mmod+
h and mmod�

h benchmark scenarios, are shown as shaded areas. The
allowed regions where the mass of the MSSM scalar Higgs boson h or H is compatible with the
mass of the recently discovered boson of 125 GeV within a range of ±3 GeV are delimited by
the hatched areas. A test of the compatibility of the data to a signal of the three neutral Higgs
bosons h, H and A compared to a SM Higgs boson hypothesis is performed.

⇒



Higgs physics: what do we need to know?, Georg Weiglein, 121st ILC@DESY Project Meeting, DESY, Hamburg, 04 / 2015

General case with non-zero CP violation
Mixing of the three neutral Higgs states: h, H, A → h1, h2, h3 
Heavy Higgs search: h2, h3, are nearly mass-degenerate, large 
mixing possible                                                                       
Large interference effects (constructive / destructive) possible

22

⇒
[A. Fowler, G. W. ’10]

Impact of µ in Mmod+
h scenario
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[E. Fuchs, G. W. ’14]

Effect of non-
zero phase ɸAt:            
δ = (σɸ - σ0)/σ0

mhmod+  scenario

μ = +500 GeV
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ILC: sensitivity to a heavy Higgs from off-shell effects

23

[S. Liebler, G. Moortgat-Pick, G. W. ’15]

Potential sensitivity beyond the kinematic reach of Higgs pair 
production

⇒

200 400 600 800 1000

101

102

103
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√
s = 1TeV

Pol(e+, e−) = (0.3,−0.8)
2HDM, sβ−α = 0.99
mh = 125GeV, mH = 400GeV

200 400 600 800 1000

101

102

103
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Figure 15: Event rates for e+e− → e+e−uūdd̄ for
√
s = 1TeV and

∫

Ldt = 500 fb−1 after the
cut pT,4j > 75GeV as a function of the invariant mass of the 4 jets muūdd̄ in the context of
a type II 2HDM with tan β = 1 for different values of (a,b) sβ−α := sin(β − α) = 0.95; (c,d)
sβ−α = 0.98 and (e,f) sβ−α = 0.99 and the two mass scenarios (a,c,e) mH = 400GeV and
(b,d,f) mH = 600GeV.
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Could it be a composite Higgs?

24

Higgs physics after the discovery, Georg Weiglein, Physikalisches Kolloquium, Universität Siegen, 11 / 2013

Fundamental or composite? Mixed state?

55

Option 3: A mixed state or a composite Higgs

Mixed state Higgs–radion, . . .

Composite “pseudo-Goldstone boson”, like the pion in
QCD ⇒Would imply new kind of strong interaction

Relation to weakly-coupled 5-dimensional model
(AdS/CFT correspondence)

Discrimination from fundamental scalar

Precision measurements of couplings (⇒ high
sensitivity to compositeness scale), CP properties, . . .
Does the new state have the right properties to
unitarize WLWL scattering?

Search for resonances
(light Higgs ⇔ light resonances?)

. . . Beyond the Standard Model (Higgs), Georg Weiglein, IMFP13, Santander, 05 / 2013 – p. 73
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Interpretation of the signal in extended Higgs sectors 
(SUSY), case II: signal interpreted as next-to-lightest state H

Extended Higgs sector where the second-lightest (or higher) 
Higgs has SM-like couplings to gauge bosons

Lightest neutral Higgs with heavily suppressed couplings to 
gauge bosons, may have a mass below the LEP limit of 114.4 
GeV for a SM-like Higgs (in agreement with LEP bounds)

Possible realisations: 2HDM, MSSM, NMSSM, ...

A light neutral Higgs in the mass range of about 60-100 GeV      
(above the threshold for the decay of the state at 125 GeV into 
hh) is a generic feature of this kind of scenario. The search for 
Higgses in this mass range has only recently been started at 
the LHC. Such a state could copiously be produced in SUSY 
cascades.
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LEP limits on low-mass Higgs bosons

26

Limits from the LEP Higgs searches: e+e� ! ZH,H ! bb̄

6 Karl Jakobs, Günter Quast and Georg Weiglein

Fig. 4.3 Combined result from searches for the Higgs boson by the LEP experiments
ALEPH, DELPHI, L3 and OPAL.
Left: Illustrative distribution of the main discriminating variable, the reconstructed Higgs
Mass, of Higgs boson candidates after the final selection at LEP II.
Right: 95 % upper confidence limit on the existence of a Higgs boson as a function of its
mass, at LEP I and LEP II. (taken from [16]).

number of simulated event configurations. In the limit of infinite statistics, q182

becomes exactly equal to the di↵erence in �2 between Hs+b and Hb. Integrat-183

ing the probability density functions for Hb from �1 to the value qobs deter-184

mined from the observed data, and from qobs to +1 for Hs+b, one obtains the185

p-values with respect to the two hypotheses, 1�CLb and CLs+b, where the186

names CLb and CLs+b, respectively, were introduced by the LEP collabora-187

tions to quantify the confidence level with respect to Hb and Hs+b. To obtain188

the confidence level for the exclusion of a signal, which is robust against189

setting too low exclusion limits in case of downward-fluctuations of the back-190

ground, the quantity “CLs” was introduced, defined as CLs = CLs+b

CLb
.191

A 95% exclusion limits is set at the value of the Higgs mass where CLs =192

0.05. The rescaling of the p-Value of Hs+b by the probatility to observe the193

expected background is known as the modified frequentist (or CLs) method.194

195

The results of the searches for the Higgs boson at LEP I and LEP II are196

shown on the right-hand side of figure 4.3. The limit is expressed in terms197

of the the squared coupling of the H boson to Z bosons normalized to the198

Standard Model expectation, ⇠21 that can be excluded at 95 % confidence199

level at a given value of the Higgs mass. A Standard Model Higgs boson is200

excluded at those values of MH where the observed limit, shown as the black201

1 ⇠2 is equivalent to cross section normalised to the expected one, commonly denoted as
“signal strength modifier”, µ.

✓
gHZZ

gSMHZZ

◆2

Limit for SM Higgs (ξ = 1): MH > 114.4 GeV at 95% CL               
No limit if the HZZ coupling is below 10% of the SM value
Unique sensitivity at the ILC
How much can the ILC improve over LEP?

⇒

⇒
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Incorporation of cross section limits and properties of 
the signal at 125 GeV:  HiggsBounds and HiggsSignals
• Programs that use the experimental information on cross section 

limits (HiggsBounds) and observed signal strengths 
(HiggsSignals) for testing theory predictions [P. Bechtle, O. Brein, S. 
Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. Williams ’08, ’12, ’13]

• HiggsSignals: [P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein ’13]          

- Test of Higgs sector predictions in arbitrary models against 
measured signal rates and masses

- Systematic uncertainties and correlations of signal rates, 
luminosity and Higgs mass predictions taken into account

27
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MSSM realisation: very exotic scenario, where all 
five Higgs states are light, h, H(125), A, H+-

Before charged Higgs results from ATLAS: global fit yielded acceptable fit 
probability 

28

MSSM interpretation in terms of heavy Higgs H:

where is the light Higgs h in this case?

[P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. W., L. Zeune ’12]

⇒ Light Higgs with Mh ≈ 70 GeV, in agreement with LEP limits
Beyond the Standard Model (Higgs), Georg Weiglein, IMFP13, Santander, 05 / 2013 – p. 77

Lightest Higgs: mass and couplings to gauge bosons (blue: HiggsBounds-allowed)
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In the NMSSM such a situation arises generically if 
the Higgs singlet is light

29

Figure 4: Same scan as in Fig.3 but showing the characteristics of the CP-even states (mass, singlet-
composition, relative coupling h1ZZ, mass-shift of the doublet-like h2).

The situation is essentially comparable to the previous case (note that the overall fit to the Higgs data
is somewhat worse), except for the fact that larger uplifts of the mass of the doublet-like h0

2 (�mh0
2
⇠

3� 4 GeV) are now favoured. Larger singlet doublet mixings (hence larger squared couplings of the light
singlet to Z bosons) ⇠ 15� 20% are thus prefered around mh0

1
⇠ 100 GeV. With slightly heavier singlets

mh0
1
⇠ 110 � 115 GeV, we observe that extreme mixings, up to ⇠ 25% may appear. In the presence of

mixings so large, the singlet-like state should appear as a ‘miniature’ Higgs boson and would have good
chances to be detected in direct production. Note however that, as we saw before, smaller mixings would
equally well fit in the picture, spoiling the visibility of the singlet. An alternative strategy there would
be to look at Higgs pair productions [25].

In the last references of [23], it was stressed that the characteristics of a light singlet-like state close in
mass to ⇠ 100 GeV could be altered also at large tan� so that the bb̄ rate would be suppressed and other
decay-channels, e.g. cc̄, enhanced. We illustrate this possibility in Fig.6: with already large tan� = 12,
we observe that the bb̄ rate may be strongly suppressed, while the other rates (here cc̄) are enhanced,
together with acceptable fit values (although best-fitting points retain a ‘classical’ behaviour).

Note that points involving light singlets are quite common in the NMSSM parameter space. The only
di�culty consists in stabilizing the low singlet mass and keeping the singlet-doublet mixing under control
(a strong mixing pushes the squared mass of the lightest state towards negative values). The typical scale
entering the singlet mass is 

�µ, so that light singlets favour low ratios /�. As tan� increases, however,
the balance among terms entering the mixing of the light doublet and singlet CP-even states is disturbed,
such that the region with large � and low  becomes increasingly unstable. Failing to keep /� small,
one observes that µ tends to be driven to low values ⇠ 100 GeV (in order to keep the singlet mass at the
electroweak scale without relying too much on accidental cancellations). The tuning becomes even more
severe when � ⇠  becomes large: one then relies exclusively on the accidental cancellation in the singlet
diagonal and the singlet-doublet mixing mass-matrix entries. It is therefore most natural to consider the

9

[F. Domingo, G. W. ’14]

SM-like Higgs at 125 GeV + singlet-like Higgs at lower mass 
Large singlet component leads to strong suppression of the 
coupling to gauge bosons

⇒ Figure 4: Same scan as in Fig.3 but showing the characteristics of the CP-even states (mass, singlet-
composition, relative coupling h1ZZ, mass-shift of the doublet-like h2).

this quantity reaches ⇠ 5% (for best fits) up to ⇠ 20% of its SM value: for memory, the ⇠ 2.3� LEP
excess in H ! bb̄ observed in this mass-range would be compatible with a Higgs-like state, the coupling
strength of which is reduced to ⇠ 10% of its SM value.

Another remark addresses the observation that (in this particular figure) the case where the lightest
state is a doublet (represented by the limit S2

13 ! 0, mh0
1
!⇠ 125 GeV) o↵ers a slightly worse fit

than the scenario with a lighter singlet: two factors are at work here. The first one is related to the
value of the mass characterising the doublet (‘would-be-observed’) state in this limit: it reaches only
⇠ 123 GeV (which lies on the margin of the uncertainty-allowed window). Note in particular that the
mixing-e↵ect tends to push the mass of the ‘visible’ state (now h0

1) in the ‘wrong direction’ (to lower it)
when the singlet is heavier. Yet, for some of the points under consideration, mh0

1
reaches ⇠ 125 GeV,

hence evades this first argument: the main penalty with respect to the points involving a lighter singlet,
in this case, originates from the details of the couplings of the ‘observed’ state to SM particles (hence
of its production and decay rates at the LHC). While both configurations (with a lighter singlet or a
lighter doublet) provide (doublet) couplings within a few percent of each other and of those values that a
SM Higgs boson at this mass would take, small deviations can o↵er a closer match to the LHC data. In
our particular scan for instance, the �� channel is slightly enhanced when the lighter state is dominantly
singlet, resulting in an improved agreement with the ATLAS measurement. More generally, the e↵ects
that the presence of a light singlet state may have on the couplings of the light doublet are related to the
increased flexibility o↵ered by the 3 ⇥ 3 Higgs-mixing matrix Sij : not only one (as in the pure doublet
case with a 2 ⇥ 2 matrix) but three mixing angles are at work. While one degree of freedom controls
the singlet-composition of the Higgs state at ⇠ 125 GeV (i.e. its ‘invisible’, for phenomenological reasons
subdominant, component), the other two modulate the relative proportions amongst the two doublet
components Hu and Hd (which are fixed in the case of pure doublets: in the limit MA � MZ , the
corresponding Hd/Hu ratio would be ⇠ tan�1 �), therefore granting room for small deviations (or not, if

10
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Are LHC searches sensitive to a low-mass Higgs 
with suppressed couplings to gauge bosons?

30

ATLAS h → 𝛾𝛾 searches in the low-mass region: [ATLAS Collaboration ’14]

Example: MSSM, H(125) case: BR(h1 → 𝛾𝛾) = 8.5 10-7, three orders 
of magnitude below BR for a SM-like Higgs of this mass (65 GeV)
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Light NMSSM Higgs: comparison of gg →h1 → 𝛾𝛾 
with the SM case and the ATLAS limit on fiducial σ

31

[F. Domingo, G. W. ’14]

Figure 10: On the left: gluon-gluon-fusion cross-section for the mostly-singlet state, then decaying into
a pair of photons, for a center of mass energy of 8 TeV, in the scan of Fig.8; the corresponding value
for a SM Higgs boson is given by the green curve. On the right, a reproduction of the ATLAS limit on
the fiducial cross-section for a light Higgs state (in the presence of the ⇠ 125 GeV one) decaying into
photons.

the light singlet could be more easily observed in direct production at the LHC. On the other hand, the
fit tends to associate the large diphoton branching fraction tightly with the limit of a pure singlet state,
that is with vanishing production cross-sections. Note also that the naive scenario of a singlet-like state
with dominant decays towards down-type fermions is also represented and actually provides the best-fit
point of the scan. Unconventional decay rates also appear as a possibility when the singlets are beyond
⇠ 125 GeV (blue points), even though maximal diphoton rates remain below 1%.

In Fig.10, we study how the Higgs production cross-section at 8 TeV compares to the ATLAS limits
on the fiducial cross-section for the diphoton decay channel [43]. We estimated the cross-section for the
light Higgs states of the scan of Fig.8 in the following way: we multiplied the SM gluon-gluon-fusion cross-
section delivered by SusHi [45] by the squared e↵ective coupling of h0

1 to gluons, relative to its SM value
at the same mass, and the diphoton branching ratio of h0

1. We observe that the cross-section may reach
the order of magnitude probed experimentally, both when the singlet is heavier or lighter than 125 GeV
(note that in the immediate vicinity of 125 GeV, comparing the cross-section of the mostly-singlet state
with the ATLAS limit has limited sense, due to the possibly large mixing between singlet and doublet
states), although the best-fitting points tend to cluster around much smaller values. Further searches in
the low-mass region, in the diphoton but also in the fermionic channels, would be an interesting probe
and place limits on the light-singlet scenario.

In Fig.11, we vary tan� and � somewhat so as to modulate the strength of the large � contribution to
the tree-level doublet Higgs mass. As a result, larger singlet-doublet mixings are favoured: the two-state
mixing uplift can indeed compensate the decreased tree-level contribution and thus help maintain the
mass of the light doublet state in the vicinity of ⇠ 125 GeV. In agreement with our discussion in section
4, we observe that large singlet-doublet mixing, up to ⇠ 25%, may be achieved for a singlet mass in the
range [90� 100] GeV, with excellent fit-values to the Higgs measurement data. Therefore, this low tan�
regime also motivates the search for a light singlet state, possibly responsible for the ⇠ 2.3� excess in the
LEP e+e� ! h ! bb̄ channel. The magnitude of the mass uplift for the doublet state in this region may
again reach up to 6� 8 GeV, as we observe on the plot on the bottom left-hand side of Fig.11.

Concerning the prospects of discovery of the light state in pair production, the Higgs-to-Higgs cou-
plings in the scan of Fig.11 are displayed on the right-hand side of this figure. The typical magnitude
would be close to 0�30% of gSMH3 for h2�h1�h1, 10�40%, for h2�h2�h1, and 85�100%, for h2�h2�h2

(in the region where the lightest state is a singlet). The impact of the singlet-doublet couplings on the
apparent Higgs pair production cannot be simply estimated as the latter depends on several interfering
diagrams. We see however that the typical couplings reach ⇠ 30% of the pure-doublet value.

Although all these observations are essentially similar to our discussion in section 4, the crucial point
rests upon the fact that such a Higgs phenomenology is also achievable in this low tan� / large �

17

⇒Limit starts to probe the NMSSM parameter space

But: best fit region is far below the present sensitivity
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Higgs production at e+e- colliders

32

e+e- Higgs processes 
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•  Many processes at different √s needed & accessible 
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study this boson in the clean environment of e+e� collisions. Since the boson has been
seen in its ZZ-decay and given the indications that it also decays to WW , the main
LC production modes, Higgs-strahlung and WW -fusion can be exploited, allowing for
a model-independent reconstruction of the profile of this Higgs-like particle (hereafter
called “Higgs boson” for simplicity).

For a LC, there are qualitative di↵erences to the LHC which in turn lead to quanti-
tative improvements for the determination of the parameters of the Higgs sector. The
precise measurements of these parameters allows for the identification of the nature of
underlying physics. The experimental anchor of LC Higgs physics is the possibility to
observe the Higgs boson in Higgs-strahlung, e+e� ! HZ as a resonance in the mass
recoiling against a leptonically decaying Z-boson independent of a specific Higgs decay,
see Fig. 2.13 (right). This allows for the direct reconstruction of gHZ , the Higgs-Z cou-
pling. Thus, inherently any Higgs branching ratios and couplings can be determined
absolutely and without correlations. This includes potential beyond-SM decays such as
e.g. invisible decays, decays into light quarks etc.
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Fig. 9: Left: Production cross-sections of the SM Higgs boson in e+e� collisions as a function of
p

s for
mH = 125 GeV. Right: SUSY production cross-sections of model III as a function of

p
s. Every line of

a given colour corresponds to the production cross section of one particle in the legend.

Table 5: Summary of results obtained in the Higgs studies for mH =120 GeV. All analyses at centre-of-
mass energies of 350 GeV and 500 GeV assume an integrated luminosity of 500 fb�1, while the analyses
at 1.4 TeV (3 TeV) assume 1.5 ab�1(2 ab�1).

Higgs studies for mH =120 GeV
p

s Process Decay Measured Unit Generator Stat. Comment(GeV) mode quantity value error

350 ZH ! µ+µ�X
� fb 4.9 4.9% Model

Mass GeV 120 0.131 independent,
using Z-recoil

500
SM Higgs

ZH ! qq̄qq̄
�⇥ BR fb 34.4 1.6% ZH ! qq̄qq̄

production Mass GeV 120 0.100 mass
reconstruction

500 ZH,H��̄ �⇥ BR fb 80.7 1.0% Inclusive

! ��̄qq̄ Mass GeV 120 0.100 sample

1400 H ! �+��

�⇥ BR fb

19.8 <3.7%

3000
WW H ! bb̄ 285 0.22%
fusion H ! cc̄ 13 3.2%

H ! µ+µ� 0.12 15.7%

Higgs
1400 WW tri-linear ⇠20%
3000 fusion coupling ⇠20%

gHHH

10

Figure 2: The recoil mass distribution for e+e� � ZH � µ+µ�H events with mH = 120 GeV in the ILD
detector concept at the ILC [6]. The numbers of events correspond to 250 fb�1 at

�
s = 250 GeV, and the

error bars show the expected statistical uncertainties on the individual points.

�
s 250 GeV 350 GeV

Int. L 250 fb�1 350 fb�1

�(�)/� 3 % 4 %
�(gHZZ)/gHZZ 1.5 % 2 %

Table 2: Precision measurements of the Higgs coupling to the Z at
�

s = 250 GeVand
�

s = 350 GeV based
on full simulation studies with mH = 120 GeV. Results from [6] and follow-up studies.

even near threshold at 500 GeV with 1 ab�1, thanks to the factor of two enhancement of the QCD-induced
bound-state e�ect. The measurement, which is made di�cult by a very large tt̄ background, relies on the
foreseen performances of the LC detectors. Furthermore, �gH��/gH�� can be measured at � 5% precision
at a 500 GeV LC with 500 fb�1 of integrated luminosity.

2.3 Higgs Coupling Measurements at
�

s � 500 GeV

The large samples of events from both WW and ZZ fusion processes would lead to a measurement of the
relative couplings of the Higgs boson to the W and Z at the 1 % level. This would provide a strong test of
the SM prediction gHWW/gHZZ = cos2 �W .

The ability for clean flavour tagging combined with the large samples of WW fusion events allows the
production rate of e+e� � H�e�e � bb�e�e to be determined with a precision of better than 1 %. Further-
more, the couplings to the fermions can be measured more precisely at high energies, even when accounting
for the uncertainties on the production process. For example, Table 3 shows the precision on the branching
ratio obtained from full simulation studies as presented in [4]. The uncertainties of the Higgs couplings
can be obtained by combining the high-energy results with those from the Higgs-strahlung process. The
high statistics Higgs samples would allow for very precise measurements of relative branching ratios. For
example, a LC operating at 3 TeV would give a statistical precision of 1.5 % on gHcc/gHbb.

2.4 Higgs Self-Coupling

In the SM, the Higgs boson originates from a doublet of complex scalar fields described by the potential

V(�) = µ2�†� + �(�†�)2 .

5

Figure 2.13: (Left) Cross sections for various Higgs boson production processes in e+e� col-
lisions. (Right) Recoil mass distribution for e+e� ! ZH ! µ+µ�H events at the ILC for
mH = 120 GeV and 250 fb�1 at

p
s = 250 GeV.

The reconstruction of the Higgs boson profile requires di↵erent steps in centre-of-mass
energy. The recoil mass spectrum as well as branching ratios (b, c, ⌧ , g, W , Z, �) can
be measured in Higgs-strahlung where the maximum of the cross section for a 125 GeV
Higgs boson is around 250 GeV. Given the inherent, approximately linear, increase of
instantaneous luminosity with

p
s, comparable accuracies can be achieved at 250 GeV

and 350 GeV. The most precise method to reconstruct the total decay width involves the
precise measurement of the WW -fusion cross-section which rises logarithmically with

p
s

and requires at least 350 GeV.
Since the H ! tt̄ decay is kinematically forbidden, the top Yukawa coupling needs to

be measured in e+e� ! tt̄H. The cross section has a broad maximum around 700 GeV.
The top Yukawa coupling can be measured with ⇠ 15% precision at

p
s = 500 GeV for

500 fb�1[10].
The measurement of a non-zero trilinear Higgs coupling �HHH signals a non-trivial

structure of the Higgs potential and thus spontaneous symmetry breaking. At the LC
it can be accessed mainly through two di↵erent production mechanisms, e+e� ! HHZ

ILC 
CLIC 
LEP3 
TLEP 
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What do we know about the properties of the 
discovered signal?
• Mass: ATLAS + CMS ⇒ MH = 125.09 ± 0.24 GeV : already a 

precision observable (0.19%)

• Spin: can be determined by discriminating between distinct 
hypotheses 0, 1, 2, ... unless signal consists of superposition 
of more than one states ⇒ spin 0 preferred

• CP properties: compatible with pure CP-even state (SM case), 
pure CP-odd state excluded, only very weak bounds so far 
on an admixture of CP-even and CP-odd components

33
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Higgs mass measurement: the need for high precision
Measuring the mass of the discovered signal with high 
precision is of interest in its own right

But a high-precision measurement has also direct implications 
for probing Higgs physics

MH: crucial input parameter for Higgs physics

BR(H → ZZ*), BR(H → WW*): highly sensitive to precise 
numerical value of MH 

A change in MH of 0.2 GeV shifts BR(H → ZZ*) by 2.5%! 

Need high-precision determination of MH to exploit the 
sensitivity of BR(H → ZZ*), ... for testing BSM physics

34

⇒
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Mass dependence and off-shell effects

High sensitivity on mass value and importance of off-shell effects 
for BR(H → ZZ*), BR(H → WW*) have same physical origin: 

35
⇒

For a 125 GeV Higgs boson the branching ratios into              
BR(H → ZZ*), BR(H → WW*) are far below threshold                     
⇒ Strong phase-space suppression, steep rise with MH       
Sensitive dependence on MH, off-shell effects are important 

Mh = 125GeV

SM Higgs 
branching 
fractions:

[LHC Higgs XS WG ’14]
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CP properties

      properties: more difficult than spin, observed state can 
be any admixture of      -even and      -odd components  

36
Implications of the Higgs signal for BSM physics, Georg Weiglein, Planck 2014, Paris, 05 / 2014

CP properties

5

CP properties

CP-properties: more difficult situation, observed state can be
any admixture of CP-even and CP-odd components

Observables mainly used for investigaton of CP-properties
(H → ZZ∗,WW ∗ and H production in weak boson fusion)
involve HV V coupling

General structure of HV V coupling (from Lorentz invariance):

a1(q1, q2)g
µν + a2(q1, q2)

[

(q1q2) g
µν − qµ1 q

ν
2

]

+ a3(q1, q2)ε
µνρσq1ρq2σ

SM, pure CP-even state: a1 = 1, a2 = 0, a3 = 0,

Pure CP-odd state: a1 = 0, a2 = 0, a3 = 1

However, in many BSM models a3 would be loop-induced and
heavily suppressed ⇒ Realistic models often predict a3 $ a1

– p. 20

However: in many models (example: SUSY, 2HDM, ...) a3 is 
loop-induced and heavily suppressed

CP
CPCP
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CP properties

37

Observables involving the HVV coupling provide only 
limited sensitivity to effects of a CP-odd component, even 
a rather large CP-admixture would not lead to detectable 
effects in the angular distributions of H → ZZ* → 4 l, etc. 
because of the smallness of a3 

Hypothesis of a pure CP-odd state is experimentally 
disfavoured

However, there are only very weak bounds so far on an 
admixture of CP-even and CP-odd components

Channels involving only Higgs couplings to fermions could 
provide much higher sensitivity 

⇒
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Experimental analyses beyond the hypotheses of 
pure CP-even / CP-odd states

38

[CMS Collaboration ’14]

13.4 Spin and parity 39

cross sections for alternative signal hypotheses are left floating in the fit. The same approach is
taken for the SM Higgs boson hypothesis: i.e., the overall SM Higgs boson signal strength µ is
the best-fit value as it comes out from data. This way, the overall signal event yield is not a part
of the discrimination between alternative hypotheses. Consequently, for pairwise tests of alter-
native signal hypotheses with respect to the SM Higgs boson, the test statistic is defined using
the ratio of signal plus background likelihoods for two signal hypotheses q = �2ln(LJP /L0+).
The expected distribution of q for the pseudoscalar hypothesis (blue histogram) and the SM
Higgs boson (orange histogram) are shown in Fig. 26 (left). Similar distributions for the test
statistic q are obtained for the other alternative hypotheses considered. The pseudoexperiments
are generated using the nuisance parameters fitted in data.

To quantify the consistency of the observed test statistics qobs with respect to the SM Higgs
boson hypothesis (0+), we assess the probability p = P(q  qobs | 0+ + bkg) and convert it into
a number of standard deviations Z via the Gaussian one-sided tail integral:

p =
Z •

Z

1p
2p

exp
��x2/2

�
dx. (18)

Similarly, the consistency of the observed data with alternative signal hypotheses (JP) is as-
sessed from P(q � qobs | JP +bkg). The CLs criterion, defined as CLs = P(q � qobs | JP + bkg)/P(q � qobs | 0+ + bkg) <
a, is used for the final inference of whether a particular alternative signal hypotheses is ex-
cluded or not with a given confidence level (1 � a).

The expected separations between alternative signal hypotheses are quoted for two cases. In
the first case, the expected SM Higgs boson signal strength and the alternative signal cross
sections are equal to the ones obtained in the fit of the data. The second case assumes the
nominal SM Higgs boson signal strength (µ = 1, as indicated in parentheses for expectations
quoted in Table 8), while the cross sections for the alternative signal hypotheses are taken to
be the same as for the SM Higgs boson (the 2e2µ channel is taken as a reference). Since the
observed signal strength is very close to unity, the two results for the expected separations are
also similar. The observed values of the test statistic in the case of the SM Higgs boson versus a
pseudoscalar boson are shown with red arrows in Fig. 26 (left). Results obtained from the test
statistic distributions are summarized in Table 8 and in Fig. 27.

The observed value of the test statistic is larger than the median expected for the SM Higgs
boson. This happens for many distributions because of strong kinematic correlations between
different signal hypotheses, most prominently seen in the mZ2 distributions. The pseudoscalar
(0�) and all spin-1 hypotheses tested are excluded at the 99.9% or higher CL All tested spin-2
models are excluded at the 95% or higher CL The 0+h hypothesis is disfavored, with a CLs value
of 4.5%.

In addition to testing pure JP states against the SM Higgs boson hypothesis, a measurement
for a possible mixture of CP-even and CP-odd states or other effects leading to anomalous
couplings in the H ! ZZ decay amplitude in Eq. (6) is performed. The D0� discriminant
is designed for the discrimination between the third and the first amplitude contributions in
Eq. (6) when the phase fa3 between a3 and a1 couplings is not determined from the data [48].
For example, even when restricting the coupling ratios to be real, there remains an ambiguity
where fa3 = 0 or p. The interference between the two terms (a1 and a3) is found to have a
negligible effect on the discriminant distribution or the overall yield of events. The parameter
fa3 is defined as

fa3 =
|a3|2s3

|a1|2s1 + |a2|2s2 + |a3|2s3
, (19)

6.2 Constraints on and exclusions of exotic models 27
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Figure 8: Observed likelihood scans for pairs of effective fractions fL1 vs fa2, fL1 vs fa3 and
fa2 vs fa3 (from top to bottom). Left column shows the results where the amplitudes are con-
strained to be real, and all other amplitudes are fixed to the SM predictions. The right column
shows the results where the phases of the amplitudes, as well as additional ZZ amplitudes are
profiled. Results are obtained using the kinematic discriminant method.

The expected separations from the test statistic distributions for all the considered models are
summarized in Table 9 and in Figure 13. It can be appreciated that the data has disfavoured
all tested spin-two hypotheses in favour of SM hypothesis 0+ with CLs value larger then 95%
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Loop suppression of a3 in many BSM models 

Even a rather large CP-admixture would result in only a very 
small effect in fa3!

Extremely high precision in fa3 needed to probe possible 
deviations from the SM

The Snowmass report sets as a target that should be achieved 
for fa3 an accuracy of better than 10-5! 

39

Experimental analyses beyond the hypotheses of 
pure CP-even / CP-odd states

⇒

⇒
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Higgs coupling determination at the LHC

40

Higgs coupling determination at the LHC

Problem: no absolute measurement of total production cross
section (no recoil method like LEP, ILC: e+e− → ZH,
Z → e+e−, µ+µ−)

Production × decay at the LHC yields combinations of Higgs
couplings (Γprod,decay ∼ g2prod,decay):

σ(H)× BR(H → a+ b) ∼
ΓprodΓdecay

Γtot
,

Large uncertainty on dominant decay for light Higgs: H → bb̄

⇒Without further assumtions, total Higgs width cannot
be determined

⇒ LHC can directly determine only ratios of couplings,
e.g. g2Hττ/g

2
HWW

Beyond the Standard Model (Higgs), Georg Weiglein, IMFP13, Santander, 05 / 2013 – p. 49

Total Higgs width cannot be determined without further 
assumptions

LHC can directly determine only ratios of couplings,
e.g.  

Higgs coupling determination at the LHC

Problem: no absolute measurement of total production cross
section (no recoil method like LEP, ILC: e+e− → ZH,
Z → e+e−, µ+µ−)

Production × decay at the LHC yields combinations of Higgs
couplings (Γprod,decay ∼ g2prod,decay):

σ(H)× BR(H → a+ b) ∼
ΓprodΓdecay

Γtot
,

Large uncertainty on dominant decay for light Higgs: H → bb̄

⇒Without further assumtions, total Higgs width cannot
be determined

⇒ LHC can directly determine only ratios of couplings,
e.g. g2Hττ/g

2
HWW

Beyond the Standard Model (Higgs), Georg Weiglein, IMFP13, Santander, 05 / 2013 – p. 49

⇒
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``Golden channel’’ at the ILC: 

Recoil method: absolute measurement of ZH cross section and branching ratios

41

e+e� ! ZH,Z ! e+e�, µ+µ�

2013-10-14 Higgs Couplings 2013 “Prospects for measuring Higgs boson couplings at the ILC" (T. Tanabe)�

 [GeV]recoilM
120 130 140 150

Ev
en

ts
/0

.2
 [G

eV
]

0

50

100

150 X-µ+µAZh
 = 250 GeVs

) = (-0.8, +0.3)+, e-, P(e-1 = 250 fbintL
Signal+Background (MC)
Fitted signal+Background
Fitted signal
Fitted background

Higgs Recoil Mass 
Reconstruct Zl+l− 
independent of Higgs decay 
sensitive to invisible Higgs decays 

Z⇤

e�

e+

`+

`�

H

gHZZ 

m2
recoil = (

�
s � E��)

2 � |�p��|2

Model-independent, absolute measurements 
Z!e+e−,µ+µ−, √s=250 GeV, L=250 fb-1 
•  σZH ≤ 2.6% 
•  ΔmH ≤ 30 MeV 
•  BR(invisible) < 0.7% (95% C.L.) Gauss. width ≈ 650 MeV� =� 560 MeV�!⊕� 330 MeV�

beam energy 
spread�

detector 
resolution�

���

ILC Higgs WG Input to Snowmass 



Higgs physics: what do we need to know?, Georg Weiglein, 121st ILC@DESY Project Meeting, DESY, Hamburg, 04 / 2015

Recoil method: impact of off-shell effects

42

4 Phenomenological implications of off-shell contributions

In this section we want to investigate the consequences of the off-shell Higgs contributions
for the Z recoil method and the extraction of HV V couplings. Moreover we comment on
their role for unitarity cancellations in gauge boson scattering and their possible impact on
constraining higher-dimensional operators, which can for instance be induced in composite
Higgs scenarios. The connection to the Higgs width is analysed in the subsequent sections.

4.1 Z recoil method

As pointed out the Z recoil mass measurement is a key feature of a linear collider, which
allows to access the production process e+e− → ZH only through the decays of the Z boson,
so that the absolute measurement of the cross section is possible. The analysis is primarily
based on the decays Z → e+e−/µ+µ− [33], where by the invariant mass and the energy of
the l+l− system the reconstructed mass m̂Z and the energy EZ of the Z boson are obtained.
Recently also hadronic final states were discussed [47, 48]. The recoil mass mR is computed
according to

m2
R
= s+ m̂2

Z
− 2EZ

√
s (9)

and thus equals the invariant mass of the Higgs boson p2H . According to our discussion
off-shell effects in Higgs boson decays manifest themselves in the differential cross section
dσ/dmR, which we demonstrate in Fig. 8 for the Higgsstrahlung production process. The
figures show the results obtained by Eq. (5), where the invariant mass mV V is replaced by
mR, combined with the sum over the partial decays H → ZZ(∗),WW (∗), bb̄, tt̄, gg, τ+τ− as
provided by the LHC-HXSWG. The increase in the differential cross section at the thresholds
mR = 2mW and mR = 2mZ is clearly visible. Moreover at mR = 2mt additionally the decay
H → tt̄ opens kinematically. In order to quantify the off-shell contributions we use again ∆off

defined in Eq. (7) translated to e+e− → ZH → Z +X with mR instead of mV V and present
the results in Tab. 4.
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Figure 8: dσ/dmR in fb/GeV as a function of mR in GeV for e+e− → ZH → Z + X
defined in Eq. (5) (with mV V replaced by mR) combined with the sum over H → X =
ZZ(∗),WW (∗), bb̄, tt̄, gg, τ+τ− for a fixed polarisation Pol(e+, e−) = (0.3,−0.8) and cms en-
ergies (a-c)

√
s = 250, 350, 500GeV.

13

[S. Liebler, G. Moortgat-Pick, G. W. ’15]

√
s 250GeV 300GeV 350GeV 500GeV 1TeV

∆off 0.02% 0.12% 0.30% 0.91% 1.84%

Table 4: Off-shell contributions for the signal cross section determined via the Z recoil
method.

As expected from the analysis of Fig. 3 and Fig. 4, the off-shell contributions are unim-
portant for the case of

√
s = 250GeV. Because of the presence of the decay mode H → bb̄,

which dominates for mR = 120 − 130GeV, and of the other relevant decay modes for a
SM-like Higgs, the off-shell effects induced by the H → ZZ(∗) and H → WW (∗) modes are
less pronounced than in Fig. 3 and Fig. 4, but still clearly visible in Fig. 8 for

√
s = 350GeV

and
√
s = 500GeV. For

√
s = 500GeV the off-shell contributions amount to about 1% (at√

s = 1TeV they are close to 2%). While these off-shell effects are relatively small, for√
s = 500GeV and above they are nevertheless relevant for analyses aiming at an accuracy

at the percent level. The potential problem caused by the presence of off-shell contributions
is that the cross section that is determined via the recoil method actually contains a non-
negligible amount of off-shell contributions, while it is interpreted as an on-shell cross section.
The impact of the off-shell contributions can be reduced by appropriate cuts, for instance a
cut on the recoil mass mR ∈ [115, 150] GeV. Some care is necessary in this case in order to
determine the appropriate efficiencies. In case of H → ZZ(∗), where another on-shell Z bo-
son is involved in the process, a misidentification of the Z boson out of the Higgsstrahlung
process can occur. Again in the most pessimistic approach an average over the final state
Z bosons is performed, which we included in Fig. 8. We note that this averaging and thus
the misidentification of ZZ pairs lowers the total on-shell cross section by about 1 − 2%
compared to the correct discrimination of all ZZ pairs.

While the effects of the off-shell contributions on the determination of the production
cross section via the Z recoil method have turned out to be relatively small, our analysis
nevertheless adds to the motivation for performing the cross-section determination via the
Z recoil method close to threshold, i.e. at about

√
s = 250− 350GeV, rather than at higher

energies where the off-shell effects become relevant.

4.2 HV V couplings, unitarity and higher-dimensional operators

Off-shell contributions also play a role for the extraction of HV V couplings at an e+e−

collider. While in the studies carried out so far usually the validity of the ZWA has been
assumed, for precision analyses it will be important to discriminate the on-shell coupling gon

HV V

from off-shell contributions, gHV V (mV V ), through appropriate cuts on the invariant mass of
the decay products. An analysis where this will be relevant is for example the determination
of the HWW coupling from e+e− → νν̄H → νν̄WW at

√
s = 500GeV [35, 49], where both

on- and off-shell Higgs contributions are present. As mentioned in Section 3.1, for accurate
predictions of processes involving the decay of an on-shell Higgs boson into weak bosons and
thus for the determination of gon

HV V
also a precise knowledge of the Higgs mass mH will be

crucial.
Off-shell Higgs induced contributions in the scattering of longitudinal gauge bosons are

known to be of crucial importance for preserving unitarity. The corresponding amplitude
involving contributions from the gauge sector increases with the square of the cms energy
in the high-energy limit. This bad high-energy behaviour is cancelled by Higgs-exchange

14

Relatively small overall effect, grows with increasing c.m. energy⇒
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Total width

43
2013-10-14 Higgs Couplings 2013 “Prospects for measuring Higgs boson couplings at the ILC" (T. Tanabe)� �
�

Total width and coupling extraction 
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To extract couplings from BRs, we need the total width: 

To determine the total width, we need at least one pair of partial width and BR: 

g2
HXX � �(H � XX) = �H · BR(H � XX)

Combining 250 GeV (250 fb-1) + 500 GeV (500 fb-1) measurements�

∆ΓH/ΓH ! 5%
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Total Higgs width: recent analyses from CMS and ATLAS
• Exploit different dependence of on-peak and off-peak 

contributions on the total width in Higgs decays to ZZ(∗) 

• CMS quote an upper bound of 𝛤/𝛤SM < 5.4 at 95% C.L., where 
8.0 was expected, ATLAS: 𝛤/𝛤SM < 5.7 at 95% C.L., 8.5 expect.

• Problem: equality of on-shell and far off-shell couplings 
assumed; relation can be severely affected by new physics 
contributions, in particular via threshold effects (note: effects of 
this kind may be needed to give rise to a Higgs-boson width 
that differs from the SM one by the currently probed amount)

44

[C. Englert, M. Spannowsky ’14]

[CMS Collaboration ’14] [ATLAS Collaboration ’14]

⇒ SM consistency test rather than model-independent bound
Destructive interference between Higgs- and gauge-boson contributions 
(unitarity cancellations) ⇒ difficult to reach 𝛤/𝛤SM ≈ 1 even for high statistics
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Observed Median expected
RB

H∗ 0.5 1.0 2.0 0.5 1.0 2.0

cut-based 10.8 12.2 14.9 13.6 15.6 19.9
ME-based discriminant analysis 6.1 7.2 9.9 8.7 10.2 14.0

Table 3: The observed and expected 95% CL upper limits on µoff-shell in the cut-based and the ME-based
discriminant analyses in the 4! channel, within the range of 0.5 < RB

H∗ < 2. The bold numbers correspond
to the limit assuming RB

H∗ = 1. The upper limits are evaluated using the CLs method, with the alternative
hypothesis RB

H∗ = 1 and µoff-shell = 1.

off-shell
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l 4→ ZZ → H

-1Ldt = 20.3 fb∫ = 8 TeV: s

Figure 6: Scan of the negative log-likelihood, −2 lnΛ, as a function of µoff-shell in the ZZ → 4! channel
in the ME-based discriminant analysis. The black solid (dashed) line represents the observed (expected)
value including all systematic uncertainty, while the red dotted line is for the expected value without
systematic uncertainties. A relative gg→ ZZ background K-factor of RB

H∗=1 is assumed.
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Destructive interference in gg → 4 leptons
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Destructive interference between Higgs- and gauge-boson contributions 
(caused by unitarity cancellations) 

Sensitivity to Higgs width flattens out near 𝛤/𝛤SM ≈ 1; 

It will be difficult to reach the level of the SM width, even with high statistics
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N
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N
(1
) CMS analysis, m4l > 330GeV

Phys. Lett. B 736 (2014) 64
gg → 4l, V V → 4l
Background not incl.
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N
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N
(1
) CMS analysis, mT > 350GeV

Phys. Lett. B 736 (2014) 64
gg → 2l2ν, V V → 2l2ν
Background not incl.

(a) (b)

Figure 13: Scaled event rates N(r)/N(1) as a function of r for the CMS analysis presented in
Ref. [20] dependent on the production process gluon fusion (black) and vector-boson fusion
(red, dashed) for the final states (a) 4l and (b) 2l2ν. In case of (a) a likelihood discriminant
characterizing the event topology and the cut on the invariant mass of the four leptons
m4l > 330GeV was applied, in case of (b) it was asked for a transverse mass of mT > 350GeV
and a missing energy of Emiss

T > 100GeV. More details can be found in Ref. [20].

√
s 350GeV 500GeV

N0 (
∫

Ldt = 1 ab−1) 430 1024
R1 0.026 0.006
R2 0.005 0.006

Limit on r (
∫

Ldt = 1 ab−1) 9.5 15

Limit on r (
∫

Ldt = 1.5 ab−1) 5.4 8.2

Table 7: N0, R1 and R2 as a function of the cms energy for e+e− → µ+µ− + 4 jets with
m4j > 130GeV. Upper limits on r at 95% according to our simplistic Bayesian approach.

couplings gHV V to gauge bosons from the off-shell contributions in the processes under con-
sideration. Obviously the dependence given in Eq. (13) actually includes g4HV V instead of r
and thus allows to measure the mV V dependent coupling gHV V . Although the measurement
is only mildly dependent on the Higgs mass, it in the same way suffers from the large negative
interference term and thus needs high statistics.

8 Effects of the heavy Higgs in a 2HDM

In this section we want to comment on the interference effects of an on-shell heavy Higgs
with the off-shell contributions of a SM-like light Higgs in the context of a 2-Higgs-Doublet
model (2HDM). The introduction of a second Higgs doublet is a simple extension of the SM

Higgs sector. For reviews we refer to Refs. [49–54]. In our paper we assume no tree-level
flavor-changing neutral currents and CP conservation in the Higgs sector. Then the neutral
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Figure 1: (a) Differential cross-sections for the gg → (H∗ →)ZZ → 2e2µ channel at the parton level,
for the gg → H∗ → ZZ signal (red solid line), gg → ZZ continuum background (thick brown dotted
line), gg → (H∗ →)ZZ with SM Higgs coupling (magenta long dashed line) and gg → (H∗ →)ZZ
with µoff-shell = 10 (blue long dashed line). (b) Differential cross-section as a function of m4l for the
gg → H∗ → ZZ → 2e2µ signal (solid red line) and its interference with the gg → ZZ → 2e2µ
continuum background (black dashed line).

K-factor for the interference term4. This approach is adopted here for both the interference term and the
background, hence the more precise definition for the K-factor ratio above is:

RB
H∗ =

K(gg→ ZZ)
K(gg→ H∗ → ZZ)

=
KB(mZZ)
KH∗
gg (mZZ)

, (3)

where KB(mZZ) is the mass dependent K-factor for the gg→ ZZ background. As the K-factor KH∗
gg (mZZ)

is almost constant as a function of mZZ in the relevant region of phase space, no mass dependence on RB
H∗

is assumed.

3.1.2 Dependence of off-shell signal and background interference on the signal strength

An event sample MCgg→(H∗→)ZZ(µoff-shell) for the gg → (H∗ →)ZZ process with an arbitrary value
of the off-shell Higgs boson signal strength µoff-shell can be constructed from the MC sample for the
SM Higgs boson signal gg → H∗ → ZZ (MCSM

gg→H∗→ZZ), the gg → ZZ continuum background MC
sample (MCcont

gg→ZZ) and a full SM Higgs boson signal plus background gg → (H∗ →)ZZ MC sample

4Numerically, KH∗
gg (mZZ) differs from KH∗ (mZZ) by ∼ 2% as the higher-order QCD contribution from qg and qq production

is small. However, KH∗
gg (mZZ) has substantially larger uncertainties than KH∗ (mZZ).

4

[ATLAS Collaboration ’14] [ATLAS Collaboration ’14] [S. Liebler, G. Moortgat-Pick, 
G. W. ’15]

r = 𝛤/𝛤SM

⇒
⇒

to the inclusion of higher order electroweak effects as reported in Section 4.3 however, simple
rescaling of cross sections is obviously wrong. Already in the pure SM the factor κV (mV V )
for mV V > 2mt rescales the top-(bottom-)quark-induced one-loop contributions to H → V V .

In the following we want to quantify the sensitivity of a linear collider to the Higgs width
from off-shell effects, where we restrict ourselves to rather small deviations from the SM having
in mind the above assumptions/problems. We consider again the process e+e− → νν̄+4 jets
simulated with MadGraph 5. We apply the same cuts as described in Section 5. Assuming a
signal strength of µ = 1, the dependence on r can be written in the form

N(r) = N0(1 +R1
√
r +R2r) +NB . (13)

Note, that N0 differs from NwoH by on-shell Higgs events. NB are background events e+e− →
e+e− + 4 jets with undetected leptons and can be taken from Tab. 5. Their dependence on r
is negligible for r < 10. We provide the parameters N0, R1 and R2 in Tab. 6, where N0 are
the number of events for an integrated luminosity of

∫

Ldt = 500 fb−1 at the given energy.
As expected the interference term, reflected in R1, is large and negative and thus lowers the
sensitivity around r ∼ 1. For smaller

√
s on the other hand VBF is of less importance and

the interference term is therefore reduced in its relative size. To claim a possible exclusion of
large values of r, we perform a simplistic Bayesian approach: The probability P (N(r)|Nobs)
with N(r) being the expected number of events and Nobs the observed number of events
is related to P(Nobs|N(r)) through a prior π(N(r)), which we suppose to be constant as a
function of small r. Suppose the events to be distributed according to a Poisson distribution

P(Nobs|N(r)) =
e−N(r)(N(r))Nobs

Nobs!
(14)

and the observed rate equals the SM rate, i.e. Nobs = N(1), then we can exclude values of r,
where Nobs is not within the 95% uncertainty band of the Poisson distribution P(Nobs|N(r)).
The corresponding exclusions are added to Tab. 6. The interference term I lowers the sen-
sitivity to r for large

√
s even for quite high statistics as it can be seen from Fig. 12. The

minimum of N(r) is in the vicinity of one, thus either erasing the sensitivity to r completely
or providing an ambiguity of two possible values for r if statistics is high enough. The latter
might only be resolved by taking into account different final states.

√
s 350GeV 500GeV 1TeV

N0 (
∫

Ldt = 500 fb−1) 263 1775 8420
R1 −0.017 −0.010 −0.098
R2 0.026 0.019 0.048

Limit on r (
∫

Ldt = 500 fb−1) 7.0 3.8 2.8

Limit on r (
∫

Ldt = 1 ab−1) 5.1 3.1 2.5

Table 6: N0, R1 and R2 as a function of the cms energy for e+e− → νν̄ + 4 jets with
m4j > 130GeV and pT,4j > 75GeV. Upper limits on r at 95% according to our simplistic
Bayesian approach.

In contrast for the process e+e− → µ+µ− + 4 jets the interference term is positive and
no background events NB need to be considered. Tab. 7 shows the corresponding result.

20

Large negative s - b interference
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ILC: constraints on the total width via off-shell effects
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[S. Liebler, G. Moortgat-Pick, G. W. ’15]

Limited sensitivity even with high integrated luminosity⇒
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Figure 12: Normalised event rates N(r)/N(1) as a function of r for the process e+e− →
νν̄ + 4jets for

√
s = 1TeV and a fixed polarisation with 95% uncertainty bands for different

integrated luminosities.

to a Poisson distribution

P(Nobs|N(r)) =
e−N(r)(N(r))Nobs

Nobs!
(15)

and that the observed rate equals the SM rate, i.e. Nobs = N(1). Accordingly, values of r
are excluded in this way if Nobs(r) lies outside of the 95% band of the Poisson distribution
P(Nobs|N(r)). The corresponding exclusion limits for r are also shown in Tab. 6. The inter-
ference term I lowers the sensitivity to r even for quite high statistics as it can be seen from
Fig. 12, where the exclusion limits on r are shown for three values of the integrated luminosity
at

√
s = 1TeV. The minimum of N(r) is in the vicinity of r = 1, so that a measurement of

N(r) in this region has the least sensitivity to r. If N(r) differs sufficiently from the minimum
value, a high-precision measurement of N(r) could result in a two-fold ambiguity in r. The
latter might only be resolved within this method by taking into account different final states.

√
s 350GeV 500GeV

N0 (
∫

Ldt = 1 ab−1) 430 1024
R1 0.026 0.006
R2 0.005 0.006

Limit on r (
∫

Ldt = 1 ab−1) 9.5 15

Limit on r (
∫

Ldt = 1.5 ab−1) 5.4 8.2

Table 7: N0, R1 and R2 as a function of the cms energy for e+e− → µ+µ− + 4 jets with
m4j > 130GeV. The upper limits on r at 95% have been obtained according to our simplistic
Bayesian approach, using the assumptions specified in the text.

For the process e+e− → µ+µ− +4 jets the situation is different, since for this process the
interference term is positive and also no background events of the type NB as specified in
Eq. (14) need to be considered. The corresponding results are shown in Tab. 7. However, for
this process the achievable statistics limits the sensitivity to the Higgs width via this method.
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Determination of couplings and CP properties need 
to be addressed together

47

Determination of couplings and CP properties

need to be addressed together

Deviations from the SM: in general both the absolute value of
the couplings and the tensor structure of the couplings
(affects CP properties) will change

⇒ Determination of couplings and determination of
CP properties can in general not be treated separately
from each other

Deviations from the SM would in general change kinematic
distributions

⇒ No simple rescaling of MC predictions possible

⇒ Not feasible for analysis of 2012 data set

⇒ LHC Higgs XS WG: Proposal of “interim framework”
Beyond the Standard Model (Higgs), Georg Weiglein, IMFP13, Santander, 05 / 2013 – p. 50
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``Interim framework’’ for analyses so far

Simplified framework for analysis of LHC data so far; 
deviations from SM parametrised by ``scale factors’’ ϰi. 

Assumptions:

• Signal corresponds to only one state, no overlapping  
resonances, etc.

• Zero-width approximation

• Only modifications of coupling strengths (absolute values of 
the couplings)  are considered 

⇒ Assume that the observed state is a CP-even scalar
48
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Determination of coupling scale factors

49

[CMS Collaboration ’13]
Summary'of'coupling'results'

•  Results'for'generic'
fit'of'all'couplings'

•  First'6'paramaters''
all'from'the'same'
simultaneous'fit'
(but'uncertainties''
are'correlated)'

•  Last'is'BRBSM'from'
fit'with'κV'≤'1'
constraint'

HC'13:'15/10/2013' 25'G.'Petrucciani'(CERN,'CMS)'

Compatible with the SM 
with rather large errors

⇒ 

Assumption ϰV ≦ 1allows 
to set an upper bound on 
the total width

⇒ Upper limit on branching 
ratio into BSM particles:
BRBSM ≲ 0.6 at 95% C.L.
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Determination of coupling scale factors

50

[ATLAS Collaboration ’14]

Determination of ratios 
of coupling scale factors

⇒ 

5.5.3 Summary

Under the hypothesis that all tree level couplings of the new boson to SM particles are fixed to their SM
values, no significant deviations are observed in the e↵ective couplings to photons and gluons (k� and
kg, respectively) regardless of the assumption on the total width. Releasing the assumption on the total
width constrains BRi.,u. to < 0.41 at 95% CL.

5.6 Generic models

In the previous benchmark models specific aspects of the Higgs sector were tested by combining coupling
scale factors into a minimum number of parameters that are sensitive to the probed scenario. Within the
following generic models the couplings scale factors to W, Z, t, b and ⌧ are treated independently, while
for the gg ! H production, H! �� decay and the total width �H either the SM particle content is
assumed or no assumptions are made.

5.6.1 Generic model 1: only SM particles in loops and total width fixed to the SM value

In this benchmark scenario, all couplings to SM particles, relevant to the measured modes, are fitted
independently. The free parameters are: kW, kZ, kb, kt, kt, while the vertex loop factors and the total
width are calculated as a function of these parameters (see Appendix A, Eqs. 6-9). Without loss of
generality the W and Z coupling scale factors are assumed to be positive. The relevant scaling formulae
can be found in Appendix A.5.1. Due to the interference terms in gg ! H and H! ��, Eqs. 2-3, the fit
is mainly sensitive to the relative sign between the W- and top-coupling (H! ��) and also slightly to the
relative sign between the top- and bottom-coupling (gg ! H). In principle H! �� is also sensitive to
the relative sign between W and ⌧, but the e↵ect is far too small to be observable. Figure 12 shows the
results of the fits for this benchmark scenario. The five-dimensional compatibility of the SM hypothesis
with the best-fit point is 13%. In Fig. 12(c), the negative minimum of kt is expected to be disfavoured,
but it is found to be comparable with the positive one, again due to the high signal strength in the H! ��
mode. The corresponding fitted values of the relative couplings can be found in Fig. 14(a).

5.6.2 Generic Model 2: allowing deviations in vertex loop couplings and the total width

In this case the five free parameters from model 1 are retained but here the assumptions about which
particles contribute to the loops and the total width are dropped. E↵ective coupling scale factors for
the gg ! H and H! �� vertices are introduced, resulting in a total of 7 free parameters. As before,
without the assumption on the total width, only ratios of coupling scale factors can be measured. The
free parameters are:

lgZ = kg/kZ

lWZ = kW/kZ

lbZ = kb/kZ

l⌧Z = k⌧/kZ

lgZ = kg/kZ

ltg = kt/kg

kgZ = kg · kZ/kH.

The relevant scaling formulae can be found in Appendix A.5.2.
Figure 13 shows the results for this benchmark. As the loop-induced processes are expressed by

e↵ective coupling scale factors, there is no sensitivity to the relative sign between coupling scale factors.
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Constraints on coupling scale factors from 
ATLAS + CMS + Tevatron data
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Figure 11: One-dimensional ��2 profiles for the parameters in the (V ,u,d,`,g,� ,BR(H !
inv.)) fit.

can be seen in Fig. 10. It is generated by the necessity of having roughly SM-like gg ! H ! �� signal
rates. The best fit point, which has �2

min/ndf = 82.6/78, is compatible with the SM expectation at
the 1� level, as can be seen in Fig. 10. The estimated P-value is ⇠ 33.9%. Note that BR(H ! inv.)
is much stronger constrained to  20% (at 95% C.L.) in this parametrization than in the previous
fits. The reason being that the suppression of the SM decay modes with an increasing BR(H ! inv.)
cannot be fully compensated by an increasing production cross sections since the tree-level Higgs
couplings are fixed. The partial compensation that is possible by an increased gluon fusion cross
section is reflected in the strong correlation between g and BR(H ! inv.), which can be seen in
Fig. 10.

3.6 General Higgs couplings

We now allow for genuine new physics contributions to the loop-induced couplings by treating g and
� as free fit parameters in addition to a general parametrization of the Yukawa sector as employed
in Sect. 3.4. This gives in total seven free fit parameters, V , u, d, `, g, � and BR(H ! inv.).
Note, that this parametrization features a perfect sign degeneracy in all coupling scale factors, since
the only derived scale factor, 2H , depends only on the squared coupling scale factors. For practical

23

[P. Bechtle, S. 
Heinemeyer, O. Stål, 
T. Stefaniak, G. W. 
’14]

HiggsSignalsATLAS + CMS + Tev:

Seven fit 
parameters

Assumption on 
additional decay 
modes:  only 
invisible final 
states;             
no undetectable 
decay modes

Significantly 
improved 
precision 
compared to 
ATLAS or CMS 
results alone

⇒
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Simple example: common scale factor for all Higgs couplings, 
but no assumptions on undetectable / invisible decays

• Large range possible for scale factor ϰ and branching ratio into 
new physics final states without additional theoretical assumptions 
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Figure 2: Two-dimensional ��2 profiles for the fit parameters in the (,BR(H ! NP)) fit.

For a given upper limit of the total width scale factor, 2H,limit, we can thus infer the indirect bounds

  p
H,limit, BR(H ! NP) = 1 � �1

H,limit. (9)

For a current (prospective) upper limit of 2H,limit = 40 (10) at the (high-luminosity) LHC, this would
translate into   2.51 (1.78) and BR(H ! NP)  84% (68%). However, even when taking these
constraints into account there remains a quite large parameter space with possibly sizable BR(H !
NP). Hence, the LHC will not be capable to determine absolute values of the Higgs couplings in
a model-independent way. This is reserved for future e+e� experiments like the ILC, which will be
discussed in Sect. 4.2.

Returning to the current fit results displayed in Fig. 2, we can also infer from this fit a lower limit
on the total signal strength into known final states (normalized to the SM):

2 · [1 � BR(H ! NP)] � 0.81 (at 95% C.L.). (10)

Note, that this limit is irrespective of the final state(s) of the additional Higgs decay mode(s).

3.2 Couplings to gauge bosons and fermions

The next benchmark model contains one universal scale factor for all Higgs couplings to fermions, F ,
and one for the SU(2) gauge bosons, V (V = W,Z). This coupling pattern occurs, for example, in
minimal composite Higgs models [69], where the Higgs couplings to fermions and vector bosons can
be suppressed with di↵erent factors. The loop-induced coupling scale factors are scaled as expected
from the SM structure, Eqs. (4) and (5). Note that g scales trivially like F in this case, whereas �
depends on the relative sign of V and F due to the W boson-top quark interference term, giving a
negative contribution for equal signs of the fundamental scale factors. Due to this sign dependence
we allow for negative values of F in the fit, while we restrict V � 0. The assumption of universality

14

Common scale factor ϰ for all   
Higgs couplings

No assumptions on 
undetectable / invisible decays

⇒
• Constraints on total width, ϰH, are crucial!

ATLAS + CMS bounds:



Higgs physics: what do we need to know?, Georg Weiglein, 121st ILC@DESY Project Meeting, DESY, Hamburg, 04 / 2015

Prospects for Higgs-coupling determinations at 
HL-LHC, ILC without theory assumption on total width
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Figure 21. Future precision of Higgs couplings using the ultimate HL-LHC measurements alone
and in combination with ILC measurements. In all scenarios, the total width is not constrained by
assumptions on the additional Higgs decay or limited scale factor ranges (e.g. κV ≤ 1). (TS: This
plot can easily be done also for the 8-dim. fit.)
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ϰi: coupling ``scale 
factors’’ relative to 
the SM 
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Future analyses of couplings and CP properties

54

Effective Lagrangian approach, obtained from integrating out 
heavy particles

Future analyses: effective Lagrangian approach,

obtained from integrating out heavy particles

Assumption: new physics appears only at a scale
Λ!Mh ∼ 126 GeV

Systematic approach: expansion in inverse powers of Λ;
parametrises deviations of coupling strenghts and tensor
structure

∆L =
∑

i

ai
Λ2

Od=6
i +

∑

j

aj
Λ4

Od=8
j + . . .

How about light BSM particles?

Difficult to incorporate in a generic way, need full structure of
particular models

⇒ Analyses in terms of SM + effective Lagrangian and in
specific BSM models: MSSM, . . . are complementary

Beyond the Standard Model (Higgs), Georg Weiglein, IMFP13, Santander, 05 / 2013 – p. 59
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Conclusions

Discovered signal is so far compatible with a SM-like Higgs, but 
variety of interpretations possible ⇔ very different underlying physics 

Need high-precision measurements of the properties of the detected 
particle + precise theory predictions to reveal the nature of 
electroweak symmetry breaking                                                              
Close interaction between experiment and theory needed!

The best way to experimentally prove that the observed state at 125 
GeV is not the SM Higgs would be to find in addition (at least one) 
non-SM like Higgs! Have to look above but also below 125 GeV! 

Rich physics programme for Run 2 of the LHC and the ILC       
Exciting prospects: Higgs physics may be the key to revealing the 
physics behind the Standard Model!

55

⇒

⇒
⇒


