

The Open University

Low Power Sensor Concepts

Konstantin Stefanov 11 March 2015

Introduction

- The Silicon Pixel Tracker (SPT):
 - The main driver is low detector mass
 - Low mass is enabled by low detector power
 - Benefits the forward tracker from the reduced cooling, cables and mechanical structure
 - Could equally well be called "low mass pixel tracker"
 - The concept includes barrel and forward trackers using the same technology
- Low power, low noise, large pixel sensors
 - Large pixels with low noise are challenging in principle
 - Prompt charge collection and efficient data sparsification with high detection efficiency
 - Low average and peak power

Low Power Sensor Concept

- Integrating tracker
 - Binary readout only hit pixels are read out, flagged by in-pixel logic
 - In-pixel electronics should be very power efficient
 - All detector readout
 - Just a source follower in pixel, but has on-chip sparsification
- Rough calculation:
 - 30 Gpixels
 - 1 μA operating current per pixel @1.8V
 - 1% duty factor
 - Average power = 540W (but could be lower)
- For the SPT the idea is to make the signal as large as possible
 - Simplifies the in-pixel electronics, gain and power are reduced
 - Electronic noise becomes less of an issue if the signal is very large

How Signal is Usually Detected in HEP

- Signal is immediately converted to voltage at the place of collection
 - Microstrips, hybrid pixels, monolithic active pixel sensors
 - The voltage is developed across the capacitance of the collecting element (a diode)
 - $\Delta V = \Delta Q/C$
 - If C is large, ΔV is small -> can increase ΔQ by making the sensor thicker (\approx 80 e-/ μ m)
- Separating the charge collection from the voltage conversion has benefits:
 - Charge-to-voltage conversion factor (CVF) does not depend on the size of the collecting element
 - The collecting element can be very large, or very small the choice is yours
 - The sense node must be kept small to generate high voltage from small signal
- The downside:
 - Charge transfer from the collecting element to the sense node is required
 - Adds complexity

HV-CMOS for HL-LHC

HV-CMOS sensors - the structure

- Example AMS 350nm AMS HV: Typical reverse bias voltage is 60-100 V and the depleted region depth ~15 $\mu m.$
- 20 Ω cm substrate resistance -> acceptor density ~ 10¹⁵ cm⁻³.

- The electronics is inside the collecting diodes
- Modest depletion due to low resistivity silicon
- Far from ideal, as it stands
 - Large diode capacitance
 - Higher resistivity substrate required to deplete deeper

Ivan Perić, Heidelberg

he Open Jniversity

PEGASUS - Depleted MAPS (180nm)

Designed by Strasbourg

- 18 µm thick substrate
- Back-side biased to -20V for full depletion
- 25 µm x 25 µm pixels
- Noise ≈15 e-

۲

• Will not scale well towards larger pixels

Tomasz Hemperek, Bonn U

Small Sense Node vs. Large Diode

- High sensitivity node offers much higher voltage signal
- Large collecting diodes or multiple small diodes are no match
- Assuming full depletion (reduces diode capacitance)
- Larger signal requires less gain
 (e.g. ×3 could be fine) and less
 power
- Low power, noisy electronics could be OK.
- The equivalent for single photon imaging, but for MIPs

Reset Noise

Reset noise in electrons RMS: $N = \frac{\sqrt{kTC_n}}{q}$

	Responsivity	Reset noise
C _n (fF)	(µV/e-)	(e-)
1	160	12.72
2	80	17.98
5	32	28.44
10	16	40.21
20	8	56.87
50	3.2	89.92
100	1.6	127.17
200	0.8	179.84
500	0.32	284.36
1000	0.16	402.14

Konstantin Stefanov, 11 March 2015

Noise Issues

- Average signal should be 2000-4000 e- (Landau-distributed)
 - Beware of lower side tail and charge sharing
 - Many real signals will be smaller than this
- As the CVF increases reset noise becomes small
 - 16 e- RMS for 100 μ V/e- sense node
 - Correlated double sampling (CDS) still required for suppression of external interference, crosstalk, supply variations, etc.
- Transistor noise (white and 1/f) adds another ~10 e- RMS
- Very high SNR required
 - Low amplification
 - Threshold for MIP detection should be large, e.g. > 15σ
 - Even 10σ threshold in a 30 Gpix system would produce 1.4 million fake hits

Pinned Photodiode (PPD)

Eric Fossum, IEEE Journal of the Electron Devices Society (2014) The Open Universit

- Also known as 4T pixel •
- Widely used in imaging CMOS sensors with • excellent performance
 - Noise could be <1 e-_
 - **CDS comes naturally**
 - Fast enough for HD video _
- Not used in HEP (yet) •

Konstantin Stefanov, 11 March 2015

- Similar charge transfer happens in CCDs, but here without much electric field
- Charge transfer is slow (few μs)
 - Not a problem for an integrating tracker
- Photogate collection also possible higher dark current, but charge transfer could be much faster
- Large pixels (50 μm) are a solvable challenge (common interests with X-ray detection)
- Full depletion possible too
- Large PPD pixel enabling integrating tracker could be a very strong proposition

Similar Technology for HL-LHC?

- Synergies with HL-LHC could help fund detector development for ILC
- However, the radiation environment is much harsher: neutron fluence 10¹⁴ cm⁻² is predicted
 - For ILC it is 5×10⁹ cm⁻²
- Full depletion for prompt charge collection is a must, unlike for ILC
- Integrating tracker will not work for LHC, single bunch timing required
 - Power will be higher
- How to get LHC support (funding) for this?

Conclusions

- Unique features of the integrating SPT
 - Low mass enabled by low power dissipation
 - Charge transfer from a large diode to a small sense node
 - High sensitivity required to reduce power consumption
 - Binary readout
- Challenges to work on:
 - Much more detailed study required on pixel and sensor architectures
 - Pattern recognition with different degrees of integration to be proven
 - Mechanical support structure
- An opportunity for international leadership by UK institutions
- I have now a 1-year project to develop fully depleted PPD pixels large overlap with SPT
- Could be seeking support from CERN for HL-LHC

