

Tau decay identification in ILD

Trong Hieu TRAN Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

<u>Outline:</u>

- Tau decay modes
- Samples & analysis procedures
- Application of multivariate analysis technique
 - photon identification
 - tau decay mode identification
- Comparison between ILD models
 - baseline, reduced radius, change of B-field

Introduction

Tau decay reconstruction: a key to probe detector performance

- High mass compared to other leptons
 - $\bullet \rightarrow$ tau can decay hadronically (65% of cases)
- \blacksquare Light enough compared to hadrons \rightarrow decay final state is clean
 - \rightarrow can provide precise test of the SM (via both leptonic & hadronic sectors)
- Tau jet is highly collimated \rightarrow tau identification is a crucial test for ECAL
 - based essentially on the separation of the photons from π⁻ interaction or between photons themselves

Tau decay studied in this analysis to investigate the possibility of reducing the detector size.

Tau decay modes

Tau jet is compact. Separation of photons in final state is challenging, especially for a small detector.

Topologically: 3 decay modes (1,3,5-prong) hadronic 1-prong: single charged pion (kaon) and any number of π^0

Branching fraction
$17.85 \pm 0.05\%$
$17.36 \pm 0.05\%$
$10.91 \pm 0.07\%$
$25.52 \pm 0.10\%$
$9.27 \pm 0.12\%$
$8.99 \pm 0.06\%$
10.10%

Branching fraction of main decays

$$\begin{array}{c} \pi^- \nu_\tau \\ \rho^- \nu_\tau \ (\rho^- \to \pi^- \pi^0) \\ a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^0 \pi^0) \end{array}$$

0 photon 2 photons 4 photons

Samples

DBD generators $e^+e^- \rightarrow Z \rightarrow T^-T^+$ at 250 GeV C.M. energy (mixed with $e^+e^- \rightarrow Z \rightarrow \mu^-\mu^+$ \rightarrow preselection of τ events using generator information) This analysis: consider only one charged pion decay $\overline{\pi^-\nu_{\tau}}$ 0 photon 2 photons $a_1^-\nu_{\tau} (a_1^- \rightarrow \pi^-\pi^0\pi^0)$ 0 photons 4 photons τ^+ The two ta

 $e^{-}(8)$

 $e^{+}(4)$

 $\tau^{+}(2)$

 $\tau^{-}(1)$

Z

 $\mathbf{2}$

Simulation & reconstruction

Softwares Ilcsoft v01-17-06, Mokka-08-04 Garlic v3.0.3

- Baseline ILD design (DBD): SiW ECAL, **R_{ECAL}**^{inner} = 1843 mm (ILD_02_v05)
- Alternative setups: R_{FCAI} inner = 1615, 1450 mm
- Reduced TPC radius \rightarrow ECAL, HCAL, Yoke, ... radii are reduced
- Keep same aspect ratio: Radius/Length (for a reduced radius, the length is reduced as well)
- Other configurations unchanged (cell size **5x5 mm²**, thicknesses)

- Preselection:
 - preselection based on generator info: choose decays with only one charged pion
 - |cos(theta)| ^{tau} < 0.7
 - sample with one and only one reconstructed track in tau direction

Calibration

Single photon samples are used for determination of calibration constant

Calibration done for each of ECAL radii

Very small difference observed for different sizes

Reconstructed photon energy using Garlic (simulated at 10 GeV)

Photon selection: photonE vs distance to track

Clusters in track direction are already removed by Garlic

Photon identification <u>MVA Level 1</u>

Boosted Decision Tree with gradient boost (BDTG) as implemented in TMVA is used.

Number of rec photons

Reduction of radius degrades significantly the photon identification

Special case: 3 reconstructed photons

Energy asymmetry between the most and the least energetic clusters.

One EM cluster is fake \rightarrow A is close to 1.

The two clusters are then merged together if A>0.8

(a) The photon-photon energy asymmetry for the case of two reconstructed photons: comparison between generated and reconstructed values, the distributions are rather flat.

(b) The photon-photon energy asymmetry in the case of three reconstructed photons for the two decay modes $\rho\nu$ and $a_1\nu$.

Mass peaks

• Mass of the system $\pi^{\pm}\gamma(s)$ can be used to distinguish different decay mode

Special case: $\tau \rightarrow \pi v$ decay with one rec. photon

Photons: invariant mass

<u>2 reconstructed photons:</u>

 \bullet a₁v: 2 photons have been lost.

<u>3 reconstructed photons:</u>

ρν: at least one photon is fake

• a_1v : 1 photon is lost, however, photon invariant mass is mostly far from π^0 mass

<u>4 reconstructed photons:</u>

small contribution from ρν

π^0 mass reconstruction

Decay mode identification using Boosted decision tree MVA Level 2

Each decay mode (τ → πν, τ → ρν, τ → a₁ν) is used one by one as signal, the other two are used as background

- Input variables:
 - Reconstructed jet invariant mass
 - Photon invariant mass
 - Number of photons, photons' energy
- Boosted Decision Tree seems to give best performance
- Additional cuts based on jet mass (m_{jet} < m_{tau}, etc.)

Example of using $\tau \rightarrow \rho v$ as signal

Reconstructed mass

Reconstructed mass for events which are identified as rho or a₁ decays compared to MC

- Very good separation of ρ and $a_{_1}$ masses
- Slight difference observed for different ECAL sizes, especially for a_1 mass

Reconstruction efficiency & purity

Tau decay mode reconstruction efficiency for R_{ECAL} = 1843, 1615 and 1450 mm

Slight difference in terms of efficiency for three ECAL models.

This is mostly due to smaller distance between photons and between photon&track for reduced radii.

Effect of magnetic field

Summary

- Tau decay mode reconstruction (E_{tau} ~ 125 GeV which is equivalent to τ 's energy in ZH,
 - $H \rightarrow \tau \tau$ at 500 GeV cms) is investigated using Garlic v3.0.3 (ilcsoft v01-17-06).
- Nice mass peaks observed (π^0 , ρ , a_1) for different radii
- High reconstruction efficiency even with a reduced detector size
- Comparison between ILD with ECAL of radii 1843, 1615 and 1450 mm shows slight difference (overall less than 2% in terms of reconstruction efficiency and contamination)
- No significant improvement for reduced ECAL size if choose to increase magnetic field from 3.5 to 4 Tesla
- Result for small ILD sizes is quite comparable to M. Reinhard's analysis \rightarrow with a reduced ILD size we would still be able to measure the Higgs CP state via decay H $\rightarrow \tau \tau$.

Extra slides

Reconstruction efficiency (cont'd)

Comparison of efficiency for different ECAL sizes: 1843, 1615 and 1450 mm. Slight difference observed.

Number of rec photons [%]

Number of reconstructed photons

Decay mode known from MC info. Look at samples with different number of reconstructed photons. If everything is fine: πv : 0 photon, ρv : 2 photons, a_1v : 4 photons.

MVA does significantly help for photon selection against fake EM clusters compared to cut-based analysis and at the same time keep photon clusters which are not far from track.

Number of rec photons

Rec efficiency vs cosTheta

Slight dependence on $|\cos\theta|$

Effect of distance-energy cut

Photon id: 3 rec photons case

Fake clusters created from interaction with detector

"Asymmetry" of energy very close to 1

Example of photon invariant mass vs asymmetry

Angle photon-photon

Choose to merge closest clusters with asymmetry close to 1.

Example (1)

Example (2)

Photon identification

Correlation Matrix (background)

MVA Level 1

- D_{trk.clust}: distance track-cluster at ECAL front face
- Width: cluster width
- X0En10: energy fraction of cluster between 5 and 10 X_0 after the cluster start
- HitEnMean: mean of the cluster's hit energy
- HitEnRMS: RMS of the hit energy distribution
- FracDim4: cluster fractal dimension: log-ratio of the number of hits in the cluster (N1) with the number of hits when cells are grouped into larger cells of 4x4 cells (N₄): FD = $\log_{10}(N_4/N_1)/\log_{10}(4)$.
- TransRmsMin: minimum transverse RMS, cluster hits are projected onto the front face of ECAL along the direction between the CoG and the IP.

Photon identification MVALevel 1

Photon identification MVA Level 1

BDT for tau decay mode id.

Correlation Matrix (rhonu)

Linear correlation coefficients in % 100															
pho5D2Tr	6	10	38	19	2	27	60	68	14	15	37	73	100		100
pho4D2Tr	13	17	43	25	3	33	67	50	18	18	46	100	73		80
pho3D2Tr	25	35	48	24	10	48	33	26	23	26	100	46	37		60
pho2D2Tr	10	16	30	10	15	9	11	8	78	100	<mark>26</mark>	18	15		40
pho1D2Tr	6	10	13	10	5	7	10	7	100	78	23	18	14		-0
pho5E	7	12	44	21	4	32	75	100	7	8	26	50	68		20
pho4E	10	18	50	28	6	44	100	75	10	11	33	67	60	_	0
pho3E	45	57	54	25	23	100	44	32	7	9	48	33	27		-20
pho2E	27	33	42	31	100	23	6	4	5	15	10	3	2		
pho1E	23	19	36	100	31	25	28	21	10	10	24	25	19		-40
nbRecPho	38	45	100	36	42	54	50	44	13	30	48	43	38		-60
phoInvM	84	100	45	19	33	57	18	12	10	16	35	17	10	_	-80
jetInvM	100	84	38	23	27	45	10	7	6	10	25	13	6		400
jetInvphoIntpp_pho1Eho2Eho3Eho4Eho5Eho1Bho2Eho3Bho4Bho5D2T															
pho1E nbRecPho phoInvM jetInvM	23 38 84 100 <i>jet</i> /	19 45 100 84	36 100 45 38	100 36 19 23 Recept	31 42 33 27	25 54 57 45	28 50 18 10	21 44 12 7 04 ^{pho}	10 13 10 6	10 30 16 10	24 48 35 25	25 43 17 13 2 ³ D ^{ph}	19 38 10 6	25D2	-40 -60 -80 -100 7r

Correlation Matrix (pinu)

Linear correlation coefficients in % 100															
pho5D2Tr	16	13	46	41	35	87	87	99	5	15	28	39	100		100
pho4D2Tr	29	50	42	31	35	50	50	39	13	41	74	100	39		80
pho3D2Tr	35	41	43	39	35	55	37	28	18	54	100	74	28	_	60
pho2D2Tr	44	60	46	39	67	30	20	15	21	100	54	41	15	_	40
pho1D2Tr	50	10	53	34	16	9	6	5	100	21	18	13	5		-0
pho5E	16	13	46	41	35	87	88	100	5	15	28	39	99		20
pho4E	27	17	52	45	35	92	100	88	6	20	37	50	87	-	0
pho3E	31	19	57	53	41	100	92	87	9	30	55	50	87	_	-20
pho2E	47	70	47	49	100	41	35	35	16	67	35	35	35		
pho1E	76	23	70	100	49	53	45	41	34	39	39	31	41		-40
nbRecPho	69	32	100	70	47	57	52	46	53	46	43	42	46	_	-60
pholnvM	36	100	32	23	70	19	17	13	10	60	41	50	13	_	-80
jetInvM	100	36	69	76	47	31	27	16	50	44	35	29	16		100
$\frac{j_{etln}}{M} = \frac{p_{ho1}}{p_{ho2}} \frac{p_{ho2}}{p_{ho3}} \frac{p_{ho4}}{p_{ho5}} \frac{p_{ho3}}{p_{ho3}} \frac{p_{ho4}}{p_{ho3}} \frac{p_{ho4}}{p_{ho4}} p_{ho$															

BDT for tau decay mode id.

• Events which pass both 2 identifiers: apply additional criteria based on jet mass

Angle FSR photon to rec. π

Not all of FSR photons can be removed.