tth study

2015/03/13 Yuji Sudo Kyushu University

tth (h >> bb) significance

• optimize cut point of event selection to maximize $S/\sqrt{S+B}$

$$S/\sqrt{S+B}$$

(Pe,Pe ⁺)	(-0.8,+0.3)		(+0.8,-0.3)	
Lumi. (fb ⁻¹)	500	1600	500	1600
8 jets	2.17	3.89	1.40	2.53
lv + 6 jets	2.00	3.58	1.29	2.32
2l2v + 4 jets	1.02	1.83	0.72	1.31

event selection

Event Selection 8 jets

- Jet clustering : Durham algorithm $Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1-\cos\theta)}{E_{\rm cm}^2}$
 - forced 8 jet clustering for tth → 8 jets channel
 - \checkmark "Y₈₇ > 0.00038" + "Y₈₇ <= 0.00038 && Y₇₆ > 0.004"
- Isolated Lepton ID with BDT
 - ✓ require no Isolated lepton
- ✓ b candidate jets \ge 4 (b likeness >=0.85, 0.8, 0.6, 0.2)
- reject events with very forward jets
- \checkmark |Jet cosθ| ≤ 0.99
- Jet paring, χ2> 13.3
- Mjjj > 140 (top candidate 3 jet mass)
- Leading 2 jets energy sum < 188 (Gev)
- smallest 3 jets energy sum > 60 (GeV)
- 95 < Mjj < 160 (GeV) (range of higgs candidate Mjj)

Event Selection In+6 jets

- Jet clustering : Durham algorithm $Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1-\cos\theta)}{E^2}$
 - forced 6 jet clustering for tth → 6 jets channel
 - \checkmark " $Y_{65} > 0.0016$ " + " $Y_{65} < = 0.0016 & Y_{54} > 0.006$ "
- Isolated Lepton ID with BDT
 - ✓ require exact one Isolated lepton
- ✓ b candidate jets \ge 4 (b likeness >=0.85, 0.8, 0.6, 0.2)
- reject events with very forward jets
- \checkmark |Jet cosθ| ≤ 0.99
- Missing Energy > 20 GeV
- Jet paring, χ2> 30.5
- Mjjj > 140 (top candidate 3 jet mass)
- Leading 2 jets energy sum < 197 Gev
- smallest 2 jets energy sum > 66 GeV
- 95 < Mjj < 160 GeV (range of higgs candidate Mjj)

Event Selection 2l2n+4 jets

- Jet clustering : Durham algorithm $Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1-\cos\theta)}{E^2}$
 - forced 6 jet clustering for tth → 4jets channel
 - \checkmark " $Y_{43} > 0.002$ "
- Isolated Lepton ID with BDT
 - ✓ require exact two Isolated leptons
- √ 4 b jets (b likeness >= 0.85, 0.8, 0.6, 0.2)
- reject events with very forward jets
- \checkmark |Jet cosθ| ≤ 0.99
- Missing Energy > 20 GeV
- Jet paring, χ2> 12.5
- Leading jet energy < 112 (Gev)
- smallest jet energy > 38 (GeV)
- 100 < Mjj < 155 (GeV) (range of higgs candidate Mjj)

Backup

MC stat.

tth, ttz, ttbb: 100k~200k events

tbW(DBD samples): 10k~100k events

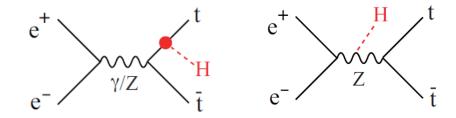
Expected # of events @ 500fb⁻¹

• \sqrt{s} = 500 GeV, Mh = 125 GeV, (Pe⁻,Pe⁺)=(-0.8,+0.3)

production cross section

Branching ratio

Process	σ (fb)
e⁻e⁺ → tth	0.485
$e^-e^+ \rightarrow ttZ$	1.974
$e^-e^+ \rightarrow ttg(bb)$	1.058
e⁻e⁺ → tbW	979.8

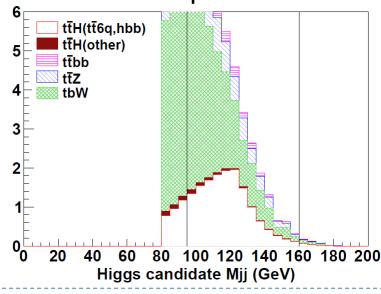

Decay mode	Branching ratio
h→bb	0.577
tt → bqqbqq	0.457
tt→blvbqq	0.438
tt→blvblv	0.105

expected # of signals and Backgrounds(@500fb⁻¹)

tth(tt6j, hbb)	63.9	tth(ttln4j,hbb)	61.3
tth(ttall, hnobb)	102.6	ttZ	987
tth(ttlvlv2b, hbb)	14.6	ttg(bb)	529
		tbW	489902

tth analysis

- interference term is negligible
- counting analysis with cut based event selection
- Use Kt clustering only for removing low Pt background
- lepton ID (cut base)
- muon selection
- electron selection
- tau (leptonic decay)
- tau (hadronic decay)


- forced 8 jets clustering & 0 isolated lepton → 8 jets channel
- forced 6 jets clustering & 1 isolated lepton → lv6jets channel
- forced 4 jets clustering & 2 isolated leptons → 2l2v 4jets channel

In this analysis, higgs decays into two b jets

require at least 4 b jets (b tagging: LCFIPlus)

tth→8jets

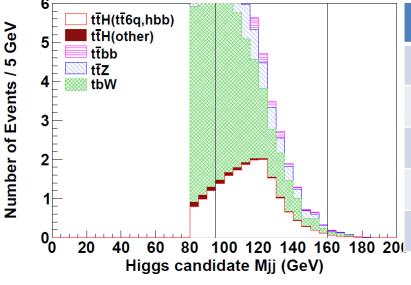
cut base lepton ID

Number of Events / 5 GeV

number of events passed all selection

of evt
14.4
0.46
7.29
2.59
25.0

before optimization of event selection


tth→8jtes

- Nsig = 14.4
- Nbkgd = 35.4
- $S/\sqrt{S+B} = 2.04$

previous result

(low MC stat) $\frac{S/\sqrt{S+B}}{=} = 2.38$

lepton ID with BDT

Process	# of evt
tth→4q+4b	14.7
tth (other)	0.44
ttZ	7.35
ttbb	2.71
tbW	25.7

tth→8jtes

- Nsig = 14.7
- Nbkgd = 36.2
- $S/\sqrt{S+B} = 2.06$

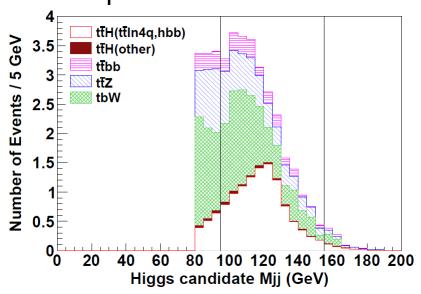
tth→In+6jets

Cut base lepton ID

4
3.5
1tH(ttln4q,hbb)
tttZ
2.5
2
1.5
0
20
40
60
80
100
120
140
160
180
200
Higgs candidate Mjj (GeV)

number of events passed all selection

Process	# of evt
tth→ ln+2q+4b	9.99
tth (other)	0.25
ttZ	5.12
ttbb	1.99
tbW	9.30


before optimization of event selection

tth→lv+6jtes

- Nsig = 9.99
- Nbkgd = 16.6
- $S/\sqrt{S+B} = 1.93$

previous result (low MC stat) $\frac{S}{\sqrt{S+B}} = 2.11$

Iepton ID with BDT

Process	# of evt
tth→ In+2q+4b	10.2
tth (other)	0.25
ttZ	5.17
ttbb	2.02
tbW	9.80

tth→lv+6jtes

- Nsig = 10.2
- Nbkgd = 17.2
- $S/\sqrt{S+B} = 1.95$

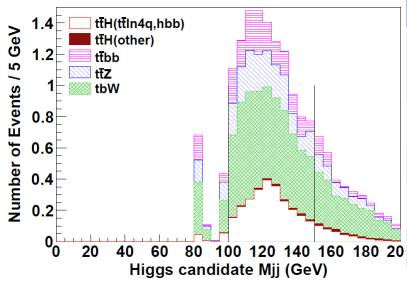
tth \rightarrow 2|2n+4b jets_{number of events} passed all selection

Cut base lepton ID

1.4 ttH(ttln4q,hbb)
ttH(other)
1.2 ttbb
tttZ
1 tbW

0.8 0.4 0.2 0.2 0.2 40 60 80 100 120 140 160 180 20 Higgs candidate Mjj (GeV)

Process	# of evt
tth→ 2l2n+4b	2.34
tth (other)	0.12
ttZ	1.78
ttbb	1.61
tbW	7.32


before optimization of event selection

 $tth \rightarrow 2l2v+4b$ jtes

- Nsig = 2.34
- Nbkgd = 10.8
- $S/\sqrt{S+B} = 0.64$

previous result (low MC stat) $\frac{S/\sqrt{S+B}}{=} 0.77$

lepton ID with BDT

Process	# of evt
tth→ 2l2n+4b	2.48
tth (other)	0.08
ttZ	1.98
ttbb	1.72
tbW	5.49

 $tth \rightarrow 2l2v+4b$ jtes

- Nsig = 2.48
- Nbkgd = 9.28
- $S/\sqrt{S+B} = 0.72$

Lepton ID

- muon selection
- electron selection
 - tau (e)
 - tau(muon)
 - tau (1-prong)
 - tau(3-prong)

Jet pairing, χ2 Cut (8 jets mode)

- \sqrt{s} = 500GeV is near by χ^2 = threshold of the tth production
 - P_{higgs} should be small
 - Dijet angle becomes large
- → Angle information between higgs candidate jets is effective to choose correct jet pair.
- try all combination and choose a pair with minimum χ^2 value

$$\chi^2 = \left(\frac{\Delta angle(j_1, j_2) - \Delta angle(higgs\ jj)}{\sigma_{\Delta angle(higgs\ jj)}}\right)^2 \\ + \left(\frac{m_{j_3j_4j_5} - M_{top}}{\sigma_{M_{top}}}\right)^2 + \left(\frac{m_{j_4j_5} - M_W}{\sigma_{M_W}}\right)^2 \\ + \left(\frac{m_{j_6j_7j_8} - M_{top}}{\sigma_{M_{top}}}\right)^2 + \left(\frac{m_{j_7j_8} - M_W}{\sigma_{M_W}}\right)^2$$

require b likeness ≥ 0.2 to j_1 , j_2 , j_3 , j_6

- Reference values are made from reconstructed jets which are matched with MC information
- Mtop = 171.5GeV
- sigma Mtop = 16.8 GeV
- MW = 80. 5GeV
- sigma MW = 9.9 GeV
- angle(jj) = 2.448
- sigma angle(jj) = 0.277

higgs and top pairing, χ2 Cut (6 jets mode)

Angle information between higgs candidate jets is effective to choose correct jet pair.

A W mass is reconstructed with Isolated lepton and Missing P

• try all combination and choose a pair with minimum χ^2 value

$$\chi^{2} = \left(\frac{\Delta angle(j_{1}, j_{2}) - \Delta angle(higgs\ jj)}{\sigma_{\Delta angle(higgs\ jj)}}\right)^{2}$$

$$SS + \left(\frac{m_{j_{3}j_{4}j_{5}} - M_{top}}{\sigma_{M_{top}}}\right)^{2} + \left(\frac{m_{j_{4}j_{5}} - M_{W}}{\sigma_{M_{W}}}\right)^{2} + \left(\frac{m_{j_{6}l\nu} - M_{top}}{\sigma_{M_{top}}}\right)^{2}$$

require b likeness ≥ 0.2 to j_1 , j_2 , j_3 , j_6

- Reference values are made from reconstructed jets which are matched with MC information
- Mtop = 171.5GeV
- sigma Mtop = 16.8 GeV
- MW = 80.5 GeV
- sigma MW = 9.9 GeV
- angle(jj) = 2.448
- sigma angle(jj) = 0.277

higgs and top pairing, χ2 Cut (4 jets mode)

$$\chi^2 = \left(\frac{\Delta angle(j_1, j_2) - \Delta angle(higgs\ jj)}{\sigma_{\Delta angle(higgs\ jj)}}\right)^2$$

Angle information between higgs candidate jets is used to choose a jet pair.

try all combination and choose a pair with minimum χ^2 value

 Reference values are made from reconstructed jets which are matched with MC information

- angle(jj) = 2.448
- sigma angle(jj) = 0.277