Higgs recoil mass study

ILC Physics Meeting 3/13/2015

Jacqueline Yan (Univ. of Tokyo)

LCWS2013

This week

- Further improvement of xsec precision and BG rejection
- new techniques in removing 2f_Z_leptonic BG while preventing signal loss
- implemented isolation cut for muon and gamma
- optimization of likelihood cut
- began applying to 250 GeV

ILC sample used i	in analysis						
chanel	mh	ECM	L	Spin polarization	Detector simulation		
e+e → Zh->µµh	125 GeV	350 GeV	333 fb-1	P(e-,e+) = (-0.8,+0.3) (+0.8,-0.3)	Full ILD (ILD_01_v05 DBD ver.)		
signal Pe2e2heL.pR / Pe2e2heR.pL			BG : all 2f, 4f, 6f processes major BG after event selection: 2f_Z_I ($\mu \mu$), 4f_WWsI , 4f_ZZ_sI ($\mu \mu$ ff, $\mu \mu \nu \nu$)				
e $M_X^2 = \left(p_{CM} \right)$ Higgs recoil against	$p=\frac{1}{p_{\mu^+}}$ di-lepton (μ	$(\mu_{\mu^-}))^2$ μ) system	$>\sim$	μ μ	$Z \qquad \mu \\ \mu \\ f \\$		

History of past weeks

cuts		(both eLpR and Nsig	l eRpL) Nbg	S/B ratio	sig eff	Δ σ / σ MC)		(only eLpR) 2f_Z_I	4f_WW_sl	4f_ZZ_sl
2 weeks ago		1056	2189	0.48	46.1 (74%)	4.39+/-0.00% (R	RMS: 0.16%)	225 (0.011%)	241 (0.009%)	950 (0.52%)
1 week ago (best result)		1062	2010	0.53	46.4 (74%)	4.27+/-0.00% (R	RMS: 0.15%)	95 (0.004%)	306 (0.010%)	967 (0.53%)
current	In(L)>-20	1056	1740	0.61	46.2 (84%)	4.05+/-0.00% (R	RMS: 0.13%)	34 (0.002%)	116 (0.004%)	840 (0.46%)
(boot result)	In(L)>-19.8	1041	1643	0.63	45.5 (84%)	4.04+/-0.00% (R	RMS: 0.13%)	31 (0.001%)	111 (0.004%)	802 (0.44%)

- Significant reduction in each major BG (25% reduction !!)
- improvement in xsec precision
- Signal efficiency before M_recoil cut is about 10% higher

What contributed ??

- More sophisticated methods to remove 2f_Z BG without losing much signal
- isolation cuts for muon and gamma
- usage of likelihood cut

Muon Selection

event selection

- reject neutrals
- P_total > 5 GeV
- E_cluster / P_total < 0.5
- cos(track angle) < 0.98 & $|D0/\delta D0| < 5$

Best muon pair candidate Selection

- opposite charge
- invariant mass closest to Z mass

Final Selection

- 84 GeV < M_inv < 98 GeV
- 10 GeV < pT_mumu < 140 GeV
- dptbal = |pT_mumu pTγ_max| > 10 GeV
- •
- |cos(θ_Zpro)| < 0.91
- 120 GeV < Mrecoil < 140 GeV

Cut values optimized in terms of signal efficiency and $\Delta \; \sigma \, / \, \sigma$

Signal: GPET

• BG: 3rd order polynomial

definition

- M_inv : invariant mass of 2 muons
- pT_mumu : pT of reconstructed muons
- pTy_max : pT of most energetic photon
- θ_Zpro = Z production angle

This part is changed !!

Final Selection

- 84 GeV < M_inv < 98 GeV
- 10 GeV < pT_mumu < 140 GeV
- dptbal = |pT_mumu pTγ_max| > 10 GeV
- |cos(θ_Zpro)| < 0.91
- 120 GeV < Mrecoil < 140 GeV

definition

- M_inv : invariant mass of 2 muons
- pT_mumu : pT of reconstructed muons
- pTγ_max : pT of most energetic photon
- θ _Zpro = Z production angle
- Econe_mu: cone energy (cosθ>0.9) around muon
- Econe_γ: cone energy (cosθ>0.9) around most energetic γ

•Pt_sum = $|Pt_d| - Pt_\gamma|$ (in vectors)

Final Selection NEW

- Econe_mu < 110 GeV
- 73 GeV < M_inv < 120 GeV widened
- 10 GeV < pT_mumu < 140 GeV
- Econe_γ > 10 GeV (*)
- Pt_sum > 40 GeV
- dptbal = pT_mumu pTγ_max > 60 GeV (*)
- |cos(θ_Zpro)| < 0.91
- 120 GeV < Mrecoil < 140 GeV

Added isolation

Combine two types of pt_balance cuts

> (*) used in coincidence with extra requirements to prevent signal loss

First of all..... Thanks to Junping-san's suggestions

Now I do dptbal > 10 GeV (instead of |dptbal| > 10 GeV
→ some improvement

	Nsig	NBG	S/B	Δσ/σ(MC)
Old: dptbal > 10 GeV	1056	2189	0.48	4.39+/- 0.00 % (rms: 0.16%)
New : dptbal > 10 GeV	1055	2119	0.50	4.33+/- 0.00 % (rms: 0.15%)

NEW Concern

possible slight bias on signal due to dptbal cut

(I just didn't realize it before since I was observing events AFTER Mrecoil cut)

to escape bias on signal

I tried to cut events that can be identified as 2f_Z_leptonic BG

do if (A) && (B) continue

where (A, B) = conditions on

- (maxgammaPt) and (dPtbal)
- (cos θ bal) and (Ebal)

Added new variables to tree for γ momentum vectors

- $\cos \theta$ bal = angle between γ and di-muon
- Ebal = (γ energy) (di-muon energy)

From Watanuki-san $H \rightarrow \tau \ \tau$ mode is major cause of bias

I applied a condition to prevent signal bias I required energy sum of γ and di-muon to be > 0.8 * sqrt(s) signature of 2f_Z_leptonic BG

Last week's strategy in order to cut more BG

Divide into three cut regions

- 1. cut all events in sharp peak (θ bal < 0.045 rad)
- 2. then cut events satisfy both θ bal and Ebal conditions
- 3. Then leave events only in bottom left corner

I played around for a long time with the event selection criteria and likelihood cut values

in aim of

- Highest signal to BG ratio
 - Smallest xsec error

It seems that Low BG improves xsec precision, but NOT if signal efficiency is too low

The best result from last week

	Nsig	Nbg	S/B ratio	sig eff	Δσ/σMC)
2 weeks ago	1056	2189	0.48	46.1+/-0.5%	4.39+/-0.00%
This week					
L Star Black and L H	Minv, CosZ, Pt,				
LIKEIIhood LI	max y Pt				
ln(L1)>-19.8	1057	2025	0.52	46.2+/-0.5%	4.29+/-0.00%
In(L1)>-19	1026	1746	0.59	44.8+/-0.5%	4.16+/-0.00%
Likelihood L2	Minv, CosZ, Pt				
In(L2)>-16	1062	2010	0.53	46.4+/-0.5%	4.27+/-0.00%
		· · · · · · · · · · · · · · · · · · ·			

Maybe the last one is best ???

Still some BG events need to be cut after using Pt_sum cut

The strategies from last week helped me understand 2f_Z_leptonic BG better

but the combinations were too complex

Besides, we still have the problem of 4f_WW_semileptonic BG

This is where I began implementing isolation cuts for muon (against 4f_WW_sl) and gamma (against 2f_Z_leptonic)

Reoptimization of invariant mass cut : widened the Minv window

- Before : 84 <Minv< 98 GeV : lose 10% signal</p>
- ➢ Now: 73 <Minv ≤ 120 GeV : lose 5% signal</p>

Effective for removing 4f_WW_sl BG

cut above 110 GeV

cosine of angle between two muons (before invariant mass cut)

-0.5

-1

0.5

0

Cone energy around most energetic gamma (~ 26 deg)

Likelihood function: L = P(M_inv) * P(Pt) * P(CosZ) * P(Pt_sum)

0⊑ -20

-15

-10

-5

0

5

15

10

20

History of past weeks

cuts		(both eLpR and Nsig	l eRpL) Nbg	S/B ratio	sig eff	Δσ/σMC)	(only eLpR) 2f_Z_I	4f_WW_sl	4f_ZZ_sl
2 weeks ago		1056	2189	0.48	46.1 (74%)	4.39+/-0.00% (RMS: 0.16%)	225 (0.011%)	241 (0.009%)	950 (0.52%)
1 week ago (best result)		1062	2010	0.53	46.4 (74%)	4.27+/-0.00% (RMS: 0.15%)	95 (0.004%)	306 (0.010%)	967 (0.53%)
current	In(L)>-20	1056	1740	0.61	46.2 (84%)	4.05+/-0.00% (RMS: 0.13%)	34 (0.002%)	116 (0.004%)	840 (0.46%)
(bear readic)	In(L)>-19.8	1041	1643	0.63	45.5 (84%)	4.04+/-0.00% (RMS: 0.13%)	31 (0.001%)	111 (0.004%)	802 (0.44%)

- Significant reduction in each major BG (25% reduction !!)
- improvement in xsec precision
- Signal efficiency before M_recoil cut is about 10% higher

What contributed ??

- More sophisticated methods to remove 2f_Z BG without losing much signal
- isolation cuts for muon and gamma
- usage of likelihood cut

2 weeks ago:

Fit range: 100-160 GeV

NEWEST

BG is reduced

Conclusion

(1)Significant reduction in BG(2) improved years precision in BG

(2) improved xsec precision : now 4.0 %

These are mainly due to

- new strategies in pt_bal cut
- isolation cuts for muon and gamma
- gain in signal

<u>Next steps :</u> How can I make xsec error go below 4% ????

However, for now I will apply similar method to other polarization scenarios and ECM= 250 GeV and compare

In time for ALCW15 (physics session)

Preview on re-visit of E_CM = 250 GeV

250 GeV: $\Delta \sigma / \sigma = 3.46 + - 0.00 \%$ (Toy MC)

- Major residual BG for 250 GeV
- 4f_ZZWWMix_I
- 4f_ZZ_I
- 4f_WW_I

350 GeV $\Delta \sigma / \sigma = 4.04 + - 0.00 \%$ (Toy MC)

- Major residual BG for 350 GeV
- 4f_WW_sl
- 4f_ZZ_l
- 2f_Z_I

hist_recoil_all_MC

recoil mass fitting method

Fit range: 100-160 GeV

1st step:

- Fit only signal with GPET float all 5 pars
- Fit only BG: 3rd order polynomial

2nd step :

fit Sig + BG : only float height and mean fix others from step 1

 $\frac{N}{\sqrt{\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x-x_{mean}}{\sigma}\right)^2\right\} \qquad \left(\frac{x-x_{mean}}{\sigma} \le k\right)$

$$\frac{N}{\sqrt{\pi\sigma}} \left[b \cdot \exp\left\{ -\frac{1}{2} \left(\frac{x - x_{mean}}{\sigma} \right)^2 \right\} + (1 - b) \exp\left\{ -k \left(\frac{x - x_{mean}}{\sigma} \right) \right\} \exp\left(k^2 / 2 \right) \right] \qquad \left(\frac{x - x_{mean}}{\sigma} \ge k \right) \quad \text{Gaus + expo (right side)}$$

Gaus (left-side),

Toy MC study

Toy MC 10000 seeds

goal: test quality of fitting method

```
in terms of M<sub>h</sub>, xsec etc.....
```

<u>method</u>:

generate MC events according to fittied "real" data

(Poisson)

fit MC hist with same GPET function \rightarrow get Nsig, xsec

X: EbalY: $cos(\theta bal)$ 2D distribution before maxgammapt cut

0.01

1.5

2

2.5

3

• Ebal = (γ energy) – (di-muon energy)

X: Ebal Y: PI − θ bal

X: Ebal Y: cos(*θ* bal)

- $\cos heta$ bal = angle between γ and di-muon
- Ebal = (γ energy) (di-muon energy)

slight improvement w.r.t. just using ptbal info.

	Nsig	NBG	S/B	Eff_sig
dptbal > 10 GeV	1100	2771	0.40	48.0+/-0.5%
dptbal > 15 GeV	1099	2711	0.41	48.0+/-0.5%
(cos(θbal)<0.6) &&(Ebal<-70)	1076	2336	0.46	47.0+/-0.5%
(cos(θbal)<0.8) &&(Ebal<-70)	1083	2431	0.45	47.3+/-0.5%

- $\cos \theta$ bal = angle between γ and di-muon
- Ebal = (γ energy) (di-muon energy)

formed using templates for signal events

Chose the conditions that give relatively high signal efficiency and low BG

- then played with likelihood cut
- and observed cross section measurement precision

		(both eLpR and	d eRpL)				(only eLpR)		
cuts		Nsig	Nbg	S/B ratio	sig eff	$\Delta \sigma / \sigma MC$)	2f_Z_I	4f_WW_sl	4f_ZZ_sl
last week		1056	2189	0.48	46.1+/-0.5%	4.39+/-0.00% (RMS: 0.16%)	225 (0.011%)	241 (0.009%)	950 (0.52%)
this week									
Likelihood L1 using	In(L1)>-19.8	1057	2025	0.52	46.2+/-0.5%	4.29+/-0.00% (RMS: 0.15%)	28 (0.002%)	377 (0.014%)	967 (0.53%)
Minv, CosΖ, Pt, max γ Pt									
	In(L1)>-19	1026	1746	0.59	44.8+/-0.5%	4.16+/-0.00% (RMS: 0.15%)	25 (0.001%)	270 (0.010%)	868 (0.48%)
Likelihood L2 using	In(L2)>-15.8	1054	1949	0.54	46.1+/-0.5%	4.28+/-0.00% (RMS: 0.15%)	90 (0.004%)	285 (0.010%)	947 (0.52%)
Minv, CosZ, Pt		1000	0010	0.50		4.07. / 0.00% (5.15. 5.15.)			
	In(L2)>-16	1062	2010	0.53	40.4+/-0.5%	4.27+7-0.00% (RMS: 0.15%)	95 (0.004%)	306 (0.010%)	967 (0.53%)

Observations

- Likelihhod cut using max γ Pt (L1) is effective for 2f_Z_leptonic
- It is hard to cut 4f_ZZ_semileptonic BG without removing too much signal
- Residual 4f_WW_semileptonic BG depends on likelihood cut value
- \rightarrow can resolve by adding muon isolation cut (?)

Distr of $\cos(\theta \text{ bal })$

Is there some way to combine info of maxgammaPt and dptbal ?

200

Parameters showing correlation: not good for likelihood cut (?)

Parameters with no apparent correlation: good for likelihood cut (?)

断面積測定の精度の評価: 異なるECMとビーム偏極の比較 NEW

ECM	Pol	ε	Δσ/σ	xsec [fb]	Nsig	significance
350 GeV	(-0.8,+0.3)	47.7+/-0.5%	4.9+/-0.2%	6.71+/-0.34	1092+/-55	17.7
	(+0.8,-0.3)	47.8+/-0.5%	5.0+/-0.2%	4.53+/-0.26	720+/-41	17.8
250 GeV	(-0.8,+0.3)	66.4+/-0.5%	3.6+/-0.1%	10.52+/-0.38	1747+/-64	21.7
	(+0.8,-0.3)	64.4+/-0.5%	3.3+/-0.1%	8.68+/-0.30	1398+/-48	22.7

注) この表の fitting範囲は115-150 GeV (AWLC14 @ Fermilabより) 現在350 GeV のみ範囲を広げて、 Δ σ / σ が 4.7 +/- 0.2 % へ改善した

<u>比較#1:</u>	ECM =350 GeV ←→	ECM = 250 GeV :	
ECM= 25	50 GeVの方がΔ σ / σ	とMh 精度 が良い	μの運動量測定の分解能は低いPTほど良い

<u>比較#2:</u> Pol: (-0.8,+0.3) ←→ (+0.8, -0.3):

- 異なる偏極の間で $\Delta \sigma / \sigma$ に大きな差がなさそう
- (+0.8, -0.3): 統計が少ないが、S/B がずっと高い: WW BGが顕著に抑制

注意) 先行studyとの色んな違い:

- assumed L (350, 250 GeV) = (333, 250 fb-1) vs RDR: (300 fb-1, 188 fb-1)
- このstudy : ALL 2f, 4f, 6f BGs (whizard generator) vs only WW, ZZ (pythia generator ?)

results for sqrt(s) =250 GeV , L = 250 fb-1

evaluated using Toy MC generated from fitted function shapes

250 GeV	ε	Δ σ/σ	xsec	Nsig	S/N	significance
(-0.8,+0.3)	66.4+/-0.5%	3.6+/-0.1%	10.52+/-0.38	1747+/-64	0.37	21.7
(+0.8,-0.3)	64.4+/-0.5%	3.3+/-0.1%	8.68+/-0.30	1398+/-48	0.81	22.7

