Estimate of ILC sensitivity to FCNC top decay $t \rightarrow ch$ at $\sqrt{s} = 500 \text{ GeV}$

Aleksander Filip Żarnecki

Faculty of Physics, University of Warsaw

April 15, 2015

Large FCNC top decays expected in many BSM scenarios

Model	$ BR(t \to c h) $	$BR(t \! ightarrow \! c \gamma)$	$BR(t \rightarrow c g)$	$BR(t \!\rightarrow\! c Z)$
SM	$3\cdot 10^{-15}$	$5\cdot 10^{-14}$	$5\cdot 10^{-12}$	10^{-14}
2HDM	10^{-5} - 10^{-4}	10^{-9}	10 ⁻⁸	10^{-10}
2HDM (FV)	$10^{-3} - 10^{-2}$	10^{-6} - 10^{-7}	10^{-4}	10^{-6}
MSSM	10^{-5} - 10^{-4}	10^{-8} - 10^{-6}	10^{-7} - 10^{-4}	10^{-8} - 10^{-6}
<i>℟</i> SUSY	10^{-9} - 10^{-6}	10 ⁻⁹ - 10 ⁻⁵	10 ⁻⁵ - 10 ⁻³	10^{-6} - 10^{-4}
Little Higgs	10 ⁻⁵	$1.3 \cdot 10^{-7}$	$1.4 \cdot 10^{-2}$	$2.6\cdot 10^{-5}$
Quark Singlet	$4.1 \cdot 10^{-5}$	$7.5 \cdot 10^{-9}$	$1.5\cdot 10^{-7}$	$1.1\cdot 10^{-4}$
Randal-Sundrum	10 ⁻⁴	10 ⁻⁹	10^{-10}	10 ⁻³

Please refer to my talk given on March 25, 2015.

Motivation

Decay $t \rightarrow c h$ in 2HDM is an interesting scenario:

- large enhancement both on tree and loop level
- well constrained kinematics
- seems to be most difficult for LHC

Limits on top FCNC decays from LHC (Moriond 2015):

$BR(t \rightarrow qZ)$	<	0.05%	(CMS)
$BR(t ightarrow c \gamma)$	<	0.18%	(CMS)
$BR(t ightarrow u\gamma)$	<	0.016%	(CMS)
$BR(t \rightarrow cg)$	<	0.016%	(ATLAS)
BR(t ightarrow ug)	<	0.0031%	(ATLAS)
BR(t ightarrow ch)	<	0.56%	$(CMS, 20 \text{ fb}^{-1})$
$BR(t \rightarrow ch)$	<	0.79%	(ATLAS, 25 fb^{-1}

WHIZARD

Model

Dedicated implementation of 2HDM(III) prepared by Florian Straub. Many thanks also due to Juergen Reuter and Wolfgang Kilian, for their help in solving different problems...

Test configuration of the model:

- $m_{h_1} = 125 \,\, {\rm GeV}$
- BR $(t \rightarrow ch_1) = 10^{-3}$
- BR $(h \rightarrow b\bar{b}) = 100\%$

Generated samples at \sqrt{s} =500 GeV

- $e^+e^- \longrightarrow t\bar{t}$ (2HDM/SM)
- $e^+e^- \longrightarrow ch_1 \overline{t}, \ t\overline{c}h_1$ (2HDM)
- $e^+e^- \longrightarrow cb\bar{b}\bar{b}l^+\nu$... (SM)

Assume that we can select high purity $t\bar{t}$ sample

 \Rightarrow main background to FCNC decays from standard decay channels

All events generated with CIRCE1 spectra + ISR (2HDM problem solved) Only t, W and h defined to be unstable. No hadronization/decays. No generator-level cuts imposed.

WHIZARD

Very simplified detector description

- detector acceptance for leptons: $|\cos \theta_I| < 0.995$
- detector acceptance for jets: $|\cos \theta_j| < 0.975$
- jet energy smearing:

• *b* tagging (misstagging) efficiencies: (LCFI+ presentation, Dec. 2013)

Scenario	b	С	uds
Ideal	100%	0%	0%
Α	90%	30%	4%
В	80%	8%	0.8%
С	70%	2%	0.2%
D	60%	0.4%	0.08%

$t\bar{t}$ final state selection

"Signal" top: $t \rightarrow ch_1 + \text{higgs decay to } b\bar{b} \Rightarrow 2 \ b \text{ tags}$ "Spectator" top: SM top decay $\Rightarrow 1 \ b \text{ tag}$

Considered final states (resulting from W^{\pm} decay channels):

- semileptonic: 4 jets + lepton + missing p_t
- fully hadronic: 6 jets, no leptons, no missing p_t (new)

$t\bar{t}$ final state selection

"Signal" top: $t \rightarrow ch_1 + \text{higgs decay to } b\bar{b} \Rightarrow 2 \ b \text{ tags}$ "Spectator" top: SM top decay $\Rightarrow 1 \ b \text{ tag}$

Considered final states (resulting from W^{\pm} decay channels):

- semileptonic: 4 jets + lepton + missing p_t
- fully hadronic: 6 jets, no leptons, no missing p_t (new)

Semileptonic:

- Missing $p_t > 20$ GeV
- Single lepton with $p_t > 15 \text{ GeV}$
- 4 jets with $p_t > 15 \text{ GeV}$
- 3 jets b-tagged

Fully hadronic:

- Missing $p_t < 10 \text{ GeV}$
- No lepton with $p_t > 10 \text{ GeV}$
- 6 jets with $p_t > 15 \text{ GeV}$
- 3 jets b-tagged

Top reconstruction

Try to group final state objects into two tops Check invariant mass distributions for all considered combinations

Semileptonic events (signal sample):

VARSAW UNIVERSIT

Top reconstruction

Try to group final state objects into two tops Check invariant mass distributions for all considered combinations

Proper combination can be easily identified

Cut based approach: W^{\pm} veto

Irreducible SM background can be suppressed by reconstructing second W

Invariant mass of two jets from "signal" top - all bq combinations

Cut based approach: W^{\pm} veto

Irreducible SM background can be suppressed by reconstructing second W

Invariant mass of two jets from "signal" top - best background fit

Signal selection

Cut based approach: Higgs candidate events W^{\pm} veto used: events with 73.5 < M_{ba} < 87.3 GeV rejected ($\pm 3\sigma$)

Invariant mass of two b-jets jets after W^{\pm} veto: signal vs background

Alternative approach - compare two hypothesis:

background hypothesis

$$\chi^2_{bg} = \left(\frac{M_{bl\nu} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{M_{l\nu} - m_W}{\sigma_{W,lep}}\right)^2 + \left(\frac{M_{bbq} - m_t}{\sigma_{t,had}}\right)^2 + \left(\frac{M_{bq} - m_W}{\sigma_{W,had}}\right)^2$$

signal hypothesis

$$\chi^2_{sig} = \left(\frac{M_{bl\nu} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{M_{l\nu} - m_W}{\sigma_{W,lep}}\right)^2 + \left(\frac{M_{bbq} - m_t}{\sigma_{t,had}}\right)^2 + \left(\frac{M_{bb} - m_h}{\sigma_h}\right)^2$$

Independent search for best background and signal combinations

Hypothesis comparison

Signal selection

Hypothesis comparison

Difference of $\log_{10}\chi^2$ for two hypothesis: signal vs background

Ideal *b*-tagging Very efficient background rejection possible

Signal selection

PACULTY OF PHYSICS

Hypothesis comparison

Difference of $\log_{10}\chi^2$ for two hypothesis: signal vs background

b-tagging scenario B Very efficient background rejection possible

Expected events

For 500 fb^{-1} , assuming $BR(t \to ch) \times BR(h \to b\bar{b}) \approx 10^{-3}$ for signal

Semileptonic	Ideal b-tagging		Scenario B		
	tīt (SM)	Signal	tīt (SM)	Signal	
All	268'000	548	268'000	548	
Single lepton + p_t	102'000	149	102'000	149	
4 jets	75'700	122	75'700	122	
3 b-tags	64.3	122	2'480	61.3	
W veto	6.4	88.8	25.7	45.4	
h mass window	1.1*	82.5	4.1	39.7	
$\chi^2 \ { m cut}$	0.82	67.7	0.89	32.5	
h mass window	0.43*	64.9	0.71	30.8	
* dominated by nonresonant bg.					

Expected events

For 500 fb^{-1} , assuming $BR(t \to ch) \times BR(h \to b\bar{b}) \approx 10^{-3}$ for signal

Fully hadronic	Ideal b-tagging		Scenario B	
	tīt (SM)	Signal	tīt (SM)	Signal
All	268'000	548	268'000	548
No leptons, no p_t	116'000	343	116'000	343
6 jets	73'200	237	73'200	237
3 b-tags	130.1	236	4'680	118
W veto	0.4	162	37.4	79.7
h mass window	0.1	154	4.1	71.7
$\chi^2 \ { m cut}$	< 0.3	152	1.3	70.2
h mass window	< 0.3	146	1.0	66.6
non-resonant contribution not included				

Selection efficiencies

Background level vs signal selection efficiency (including W^{\pm} BRs) for different *b*-tagging scenarios

Expected limits

Limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ expected for 500 fb⁻¹ from combined analysis (semileptonic+hadronic channels)

Summary

Estimate of sensitivity to $BR(t \rightarrow ch)$ based on parton level simulation

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very simplified description of detector effects
- final state reconstruction and *b*-tagging not optimized
- selection cuts not optizmized

Estimate of sensitivity to $BR(t \rightarrow ch)$ based on parton level simulation

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very simplified description of detector effects
- final state reconstruction and *b*-tagging not optimized
- selection cuts not optizmized

SM background can be very strongly suppressed using the available kinematic constraints \Rightarrow irreducible background under control

Small selection efficiency due to large overlap in kinematic space \Rightarrow up to 50% of signal events look "background-like"

Estimate of sensitivity to $BR(t \rightarrow ch)$ based on parton level simulation

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very simplified description of detector effects
- final state reconstruction and *b*-tagging not optimized
- selection cuts not optizmized

SM background can be very strongly suppressed using the available kinematic constraints \Rightarrow irreducible background under control

Small selection efficiency due to large overlap in kinematic space \Rightarrow up to 50% of signal events look "background-like"

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ reach $\sim 5 \cdot 10^{-5}$ $\sim 10^{-4}$ for $BR(t \rightarrow ch)$, assuming SM Higgs decays

FCNC decay $t \rightarrow c h$ should be measurable down to $BR \sim 10^{-4}$

Results have to be verified with full background and detector simulation.

FCNC decay $t \rightarrow c \ h$ should be measurable down to $BR \sim 10^{-4}$

Results have to be verified with full background and detector simulation.

 $t\bar{t}$ analysis (above the threshold) can be used as the reference. New requirements (to be optimized!):

- additional constraint on third *b*-tagged jet
- alternative hypothesis for kinematic reconstruction and cuts

FCNC decay $t \rightarrow c h$ should be measurable down to $BR \sim 10^{-4}$

Results have to be verified with full background and detector simulation.

 $t\bar{t}$ analysis (above the threshold) can be used as the reference. New requirements (to be optimized!):

- additional constraint on third *b*-tagged jet
- alternative hypothesis for kinematic reconstruction and cuts

Background samples already generated for $t\bar{t}$ study can be used. Large signal sample needs to be generated...