AHCAL Activities in Tokyo

W. Ootani ICEPP, University of Tokyo

CALICE Collaboration Meeting Sep. 9-11, 2015 MPP Munich

Scintillator Calorimeter Activities at ICEPP

• Members

- Prof. Sachio Komamiya
- Prof. Toshinori Mori
- Prof. Satoru Yamashita
- WO
- Students: Sei leki, Naoya Shibata, and some more
- Scintillator ECAL
 - Wedge-shape scintillator strip with surface-mount SiPM
- Scintillator HCAL (AHCAL)
 - Starting recently
 - Optimisation of SiPM optical readout
 - Test with HBU

SiPM R&D

• with a close collaboration with Hamamatsu

ex.) Development of VUV-sensitive MPPC (12×12mm²) for MEG LXe detector

- Scintillator material R&D
- Radiation hardness for SiPM/scintillator
- Development of scheme for mass test/mass production

Surface-mount MPPC

MPPC

Scintillator Calorimeter Activities at ICEPP

• Members

- Prof. Sachio Komamiya
- Prof. Toshinori Mori
- Prof. Satoru Yamashita
- WO
- Students: Sei leki, Naoya Shibata, and some more
- Scintillator ECAL
 - Wedge-shape scintillator strip with surface-mount SiPM
- Scintillator HCAL (AHCAL)
 - Starting recently
 - Optimisation of SiPM optical readout
 - Test with HBU

SiPM R&D

• with a close collaboration with Hamamatsu

ex.) Development of VUV-sensitive MPPC (12×12mm²) for MEG LXe detector

- Scintillator material R&D
- Radiation hardness for SiPM/scintillator
- Development of scheme for mass test/mass production

Surface-mount MPPC

MPPC

Study on Scintillator Material

• Typical plastic scintillator materials

- Poly-vinyl toluene (PVT):
 - Higher light yield 😊
 - Production (casting + machining) is cumbersome.
- Polystyrene (PS), Estyrene-MS (MS)
 - Moderate light yield 😐
 - Production (injection moulding) is easier.
- We are working on development of plastic scintillator material of better performance especially for PS/MS.
- Light yield was measured with AHCAL cell configuration

Light Yield Measurement

Setup

- Scintillator plate: 30×30×3 mm³
 - PVT:
 - Eljen EJ-212 (cast moulding)
 - Machining/polishing
 - PS, MS:
 - Cut out from 3mm-thick large plate produced by injection moulding, polished only at edge sides
- MPPC: S12571-025P (1×1mm², 25µm cell pitch)
- Collimated β from Sr-90 (E<2.2MeV) + trigger counter on the other side

Light Yield Measurement

- PVT shows the highest light yield (as expected).
- The light yield of PS is still reasonably high. 80-90% of PVT
 - PS can also be a good candidate material.
- No visible difference in position dependence.
 - →No significant difference in both reflection and attenuation
- Further optimisation of ingredient of PS/MS is planned to maximise light yield.

New Optical Readout Scheme

- A new optical readout scheme is under study as another possibility for surface-mount SiPM readout.
- "Four-corners readout"
 - SiPMs are located at vertices of scintillator cells and detect scintillation light from four adjacent cells.
 - Each SiPM is shared by four adjacent cells.
 - Cell hit is defined by taking a coincidence on four SiPMs belonging to the cell.
 - SiPM charge is split to hit cells if shared by adjacent cell.

Reconstruction of cell hit and cell charge

- Cell hit is defined by taking a coincidence on four SiPMs belonging to the cell.
- Cell charge is reconstructed by
 - Summing up charges for four SiPMs
 - If SiPM is shared by adjacent cell hits, SiPM charge is split to hit cells.

Reconstruction of cell hit and cell charge

- Cell hit is defined by taking a coincidence on four SiPMs belonging to the cell.
- Cell charge is reconstructed by
 - Summing up charges for four SiPMs
 - If SiPM is shared by adjacent cell hits, SiPM charge is split to hit cells.

Reconstruction of cell hit and cell charge

- Cell hit is defined by taking a coincidence on four SiPMs belonging to the cell.
- Cell charge is reconstructed by
 - Summing up charges for four SiPMs
 - If SiPM is shared by adjacent cell hits, SiPM charge is split to hit cells.

Reconstruction of cell hit and cell charge

- Cell hit is defined by taking a coincidence on four SiPMs belonging to the cell.
- Cell charge is reconstructed by
 - Summing up charges for four SiPMs
 - If SiPM is shared by adjacent cell hits, SiPM charge is split to hit cells.

Pros & Cons

Possible advantages

- Random hit due to dark noise and electric noise of SiPM is highly suppressed by taking coincidence on SiPMs at four vertices (quad coincidence!)
- Better uniformity of inside-cell response
- Higher light yield
- Cell is still operational even with dead SiPM channel(s)
- # of calibration LEDs can be reduced. Each SiPM can be calibrated using any of four cell to which the SiPM belongs.

Possible issues

- Smearing of cluster due to fake cell hit surrounded by true hit cells
- How to split charge to adjacent hit cells.
- Light leakage to neighbouring cell
- Increase of total number of SiPMs
- How to implement the scheme?

Possible Implementation

Possible optical coupling of SiPM + Scintillator at cell vertex

Prototype Test: Setup

• Two cell geometries were tested. **WLS Corner cut to form "dimple"** Scintillator cell (EJ-212) Scintillator cell (EJ-212) with reflector film (3M ESR) with reflector film (3M ESR) WLS (EJ-280 3×3×3mm³) **MPPC (1×1mm²,25µm)** PCB MPPC (1×1mm²,25µm) PCB

Prototype Test: Setup

Test PCB with surface-mount SiPM

- 9 × scintillator cells + 10 × SiPMs on PCB
- SiPM: MPPC S12571-025P (1×1mm², 25µm cell pitch)
- Scintillator: EJ-212, 30×30×3mm³

PCB with surface-mount SiPMs

3×3 scintillator cells with WLS in a plastic frame

Light Yield (Dimple)

- Excellent uniformity when summing up four corner readouts
- Light yield: 30-35pe for 4 SiPMs readout

Light Yield (WLS)

- Excellent uniformity with four corner readout
- Light yield: 27-33pe for 4 SiPMs readout

Inefficiency

- Small chance of $N_{pe}=0$ at each SiPM if light yield is moderate. No hit is defined when taking a coincidence in this case. \rightarrow inefficiency!
- Measured inefficiency ~ a few %
- Can be mitigated with improvement of light yield or higher threshold for coincidence. Note that optical coupling is not optimised yet.

Cross-talk (Dimple)

- Light leakage from hit cell to neighbouring cell was measured.
 - Sum of # of p.e. detected at three SiPMs in neighbouring cell ~1p.e.
 - Probability of fake hit at neighbouring cell triggered by light leakage (when taking quad coincidence) ~2%

Cross-talk (WLS)

- Light leakage from hit cell to neighbouring cell was measured.
 - Sum of # of p.e. detected at three SiPMs in neighbouring cell ~2.5 p.e.
 - Probability of fake hit at neighbouring cell triggered by light leakage (when taking quad coincidence) ~5%

Cross-talk (WLS)

- Light leakage from hit cell to neighbouring cell was measured.
 - Sum of # of p.e. detected at three SiPMs in neighbouring cell ~2.5 p.e.
 - Probability of fake hit at neighbouring cell triggered by light leakage (when taking quad coincidence) ~5%

Comments on Possible Issues

- Light leakage to neighbouring cell
 - To be improved by optimising optical coupling
- How to split charge
 - Under study. Equally split to the hit cells? or some more intelligent split?
- Smearing of cluster due to fake cell hit surrounded by true hit cells
 - Effect of smearing on calorimeter performance is under study by a MC simulation.
 - N.B. no double count and no loss of detected charge due to wrong charge split and fake hit
- Increase of total number of SiPMs
 - Nominal: 12×12=144, Four-corners: 13×13=169
 - If necessary, it can be reduced with three SiPMs at HBU boundary cell instead of four.

- We may be able to reduce # of sensors by a factor of two.
- Possible issues
 - Less uniformity of cell response
 - Larger cluster smearing
 - Coincidence on two SiPMs instead of four
 - Larger influence of light leakage

- We may be able to reduce # of sensors by a factor of two.
- Possible issues
 - Less uniformity of cell response
 - Larger cluster smearing
 - Coincidence on two SiPMs instead of four
 - Larger influence of light leakage

- We may be able to reduce # of sensors by a factor of two.
- Possible issues
 - Less uniformity of cell response
 - Larger cluster smearing
 - Coincidence on two SiPMs instead of four
 - Larger influence of light leakage

- We may be able to reduce # of sensors by a factor of two.
- Possible issues
 - Less uniformity of cell response
 - Larger cluster smearing
 - Coincidence on two SiPMs instead of four
 - Larger influence of light leakage

Summary and Prospects

• We've joined development of AHCAL starting with

- Scintillator material study
- Optimisation of optical readout scheme
- Study on radiation hardness of SiPM and scintillator material

• Next steps

- Optimisation of scintillator material, especially for PS/MS-based scintillator
- "Four-corners readout"
 - Further optimisation of optical coupling to
 - Improve light yield
 - Reduce light leakage to neighbouring cell
 - Simulation study on effect of cluster smearing on the calorimeter performance
 - To be tested on surface-mount type HBU (already provided by DESY group)
- Study on radiation hardness of SiPM and scintillator materials.
 - Radiation hardness test for MPPC is in progress in collaboration with Hamamatsu especially for recent version of MPPC.
 - Radiation hardness test for PVT, PS and MS.