$BR(h \rightarrow \tau^+ \tau^-)$ Study Status

Shin-ichi Kawada Hiroshima University

Asian Physics & Software Meeting (2015/May/8)

Summary (ALCW2015)

We evaluated the measurement accuracy of $BR(h \rightarrow \tau^+ \tau^-)$ with using ILD full detector simulation at 250 GeV and 500 GeV.

$\frac{\Delta(\boldsymbol{\sigma} \times \mathbf{BR})}{(\boldsymbol{\sigma} \times \mathbf{BR})}$	qqh	e ⁺ e ⁻ h	$\mu^+\mu^-h$	vvh	Combined
250 GeV, 250 fb ⁻¹	3.4%	14.4%	11.3%	32.4%	3.2%
500 GeV, 500 fb ⁻¹	4.6%	25.2%	17.8%	6.9%	3.7%

now summarizing into a paper and PhD thesis...

What I Did & Still Missing...

- I think 250 GeV analysis has been completed. ---> summarizing...
- Separation study of...
 - Zh and WWF in 500 GeV $\nu \bar{\nu} h$
 - Zh and ZZF in 500 GeV e^+e^-h

Recent Work (Progress?)

- Mainly worked on separation and more optimization in 500 GeV e^+e^-h
 - easy to separate rather than $v\bar{v}h$
 - previous analysis were not so optimized

Separation for Analysis

2 categories Zh: $M_{e^+e^-}(MC) = 85 - 100 \text{ GeV}$ ZZF: !(85 - 100 GeV)

Asian Physics & Software Meeting (2015/May/8)

Zh: Cut-based Analysis

Cut 1: visible energy < 500Cut 2: thrust < 0.93Cut 3: $|\cos \theta_{\text{thrustaxis}}| < 0.89$ Cut 4: $|\cos \theta_{\rm miss}| < 0.98$ Cut 5: $235 < E_{e^+e^-} < 245$ Cut 6: $\cos \theta_{\rho^+ \rho^-} > -0.05$ Cut 7: $\cos \theta_{\tau^+ \tau^-} < 0.58$ Cut 8: $\log_{10} |d_0 \operatorname{sig}(\tau^+)| + \log_{10} |d_0 \operatorname{sig}(\tau^-)| > 0.4$ Cut 9: $85 < M_{\rho^+ \rho^-} < 100$

 $M_{\rho+\rho}$ – Before Cut 9

all

remained N(Zh) = 9.636N(ZZF) = 0.069N(bkg) = 0signi. = 3.09

Backgrounds are almost suppressed, but event weight of aa_2f ~ 14!

ZZF: Cut-based Analysis Cut 1: visible energy < 480 Cut 2: $P_t > 120$ Cut 3: thrust < 0.93 Cut 4: $|\cos \theta_{\text{thrustaxis}}| < 0.99$ Cut 5: $|\cos \theta_{\rm miss}| < 0.99$ Cut 6: $E_{e^-} > 50, E_{e^+} > 50$ Cut 7: $E_{\tau^+\tau^-} > 120$ Cut 8: $\cos \theta_{\tau^+} - < 0.5$ Cut 9: $\cos \theta_{acop} < 0.99$ Cut 10: $\log_{10}|d_0 \operatorname{sig}(\tau^+)| + \log_{10}|d_0 \operatorname{sig}(\tau^-)| > 0.2$ Cut 11: $\log_{10}|z_0 \operatorname{sig}(\tau^+)| + \log_{10}|z_0 \operatorname{sig}(\tau^-)| > 1.2$ Cut 12: $100 < M_{\text{recoil}} < 170$ Cut 13: $M_{\rho^+\rho^-} > 100$

$M_{e^+e^-}$ Before Cut 13

remained N(ZZF) = 5.962N(Zh) = 0.078N(bkg) = 0signi. = 2.43

Backgrounds are almost suppressed,,,

Summary

- Always writing something into a paper and PhD thesis...
- Works for separation and more optimization in 500 GeV e⁺e⁻h were performed to some extent.
 - Zh: 3.09sigma, ZZF: 2.43sigma, if combine: 3.93sigma
 - previous: 3.32sigma
- But some bkgs are too low stat. ---> I requested to generate more aa_2f bkg samples... waiting answers...