Request for More MC Statistics of vvh at 350 GeV

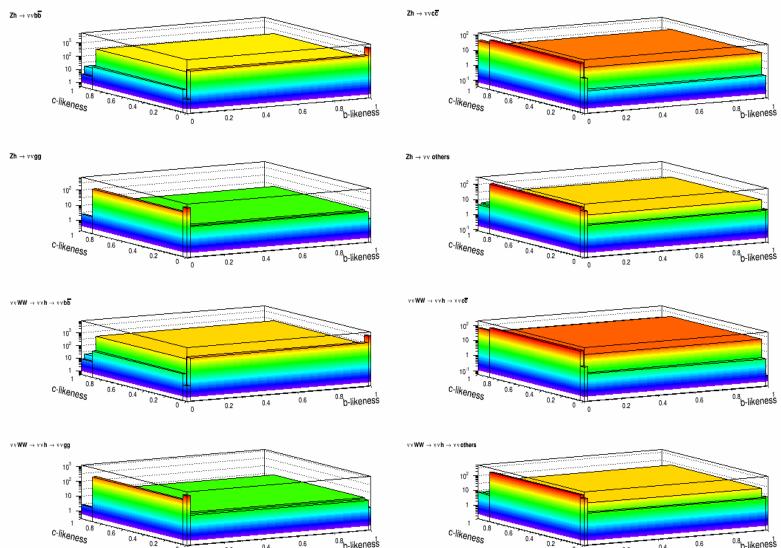
Felix Müller Software and Analysis meeting 13.05.2015

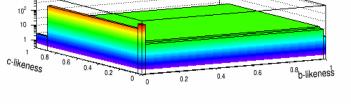
LOI Likelihood Template Fit

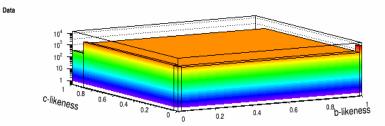
- Determination of the accuracy of the Higg's hadronic branching ratio measurements
- Create 3D-Templates with b,c and bc likeness of the events
- > LOI study used the fit function:

$$N_{ijk}^{Data} = \sum_{x=b,c,g,other} \frac{\sigma \cdot BR(h \to x)}{\left(\sigma \cdot BR(h \to x)\right)^{SM}} \cdot N_{ijk}^{h \to x} + N_{ijk}^{bkg}$$

with N_{iik} the number of events in the bin ijk


- > h \rightarrow other was fixed
- > σ includes Higgs Strahlung and WW-fusion
 - Disentangling both processes done by hand
- Binned log likelihood fit ignoring zero entry bins
 - Bias of the fit results (Output not consistent with Input)
- > 60x60x60 bins with only ~1000 mc events for cc


Template Fit

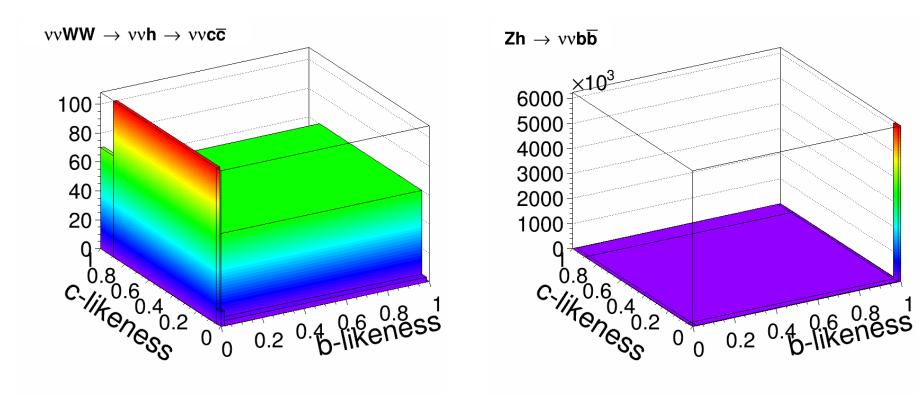

- Task: 3D template fit of b-likeness, c-likeness and missing mass to extract the Higg's hadronic branching ratios
- Previously shown results were greatly biased due to using too many bins in each dimension
- Redo the fit with fewer number of bins
- Junpin's/Jenny's suggestion: use a variable binning with only three bins in the flavor likeness dimensions (65% signal):
 - A small bin at a likeness of 0
 - A small bin at a likeness of 1
 - And the rest in another bin

SM BKG

10³ 10² 10 ^{c-likeness} 0.6 0.4 ^{0.8}b-likeness 0.2 0.6 0.4 0.2 0 0

0.6

0.4 0.2 0 0



^{0.8}b-likeness

0.6

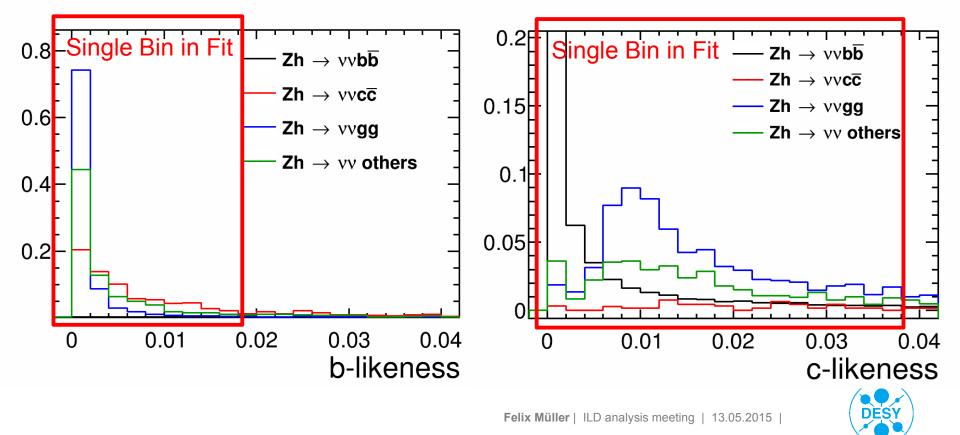
0.4

0.2

Results

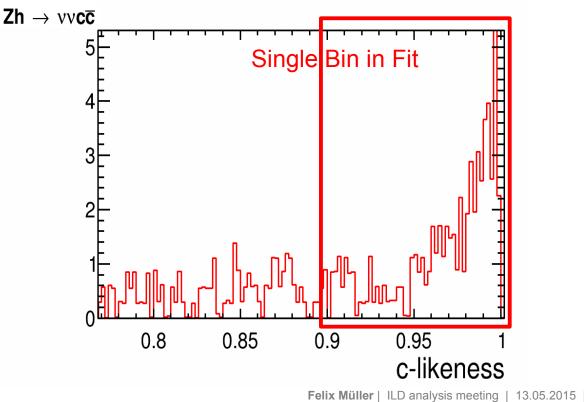
- Same data set for the toy MC histogram (Data histogram) and the Template histograms
- Splitting the MC events into two subsets, the SM could not be reproduced for cc and other (fit values deviated from 1)

	Pol (e-;e+) = (-0.8;0.3) preliminary				
	previously shown	with minmal binning	with minmal binning		
σ (ZH)BR(h->bb)	1.7	2.3	2.3	1.4	
σ(ZH)BR(h->cc)	7.5	26.9	24.1	8.6	
σ(ZH)BR(h->gg)	4.7	16.2	9.2	9.2	
σ (ZH)BR(h->other)	5.9	38.5	fix		
σ(WW)BR(h->bb)	1.3	1.8	1.8		
σ(WW)BR(h->cc)	6.0	21.7	18.8		
σ(WW)BR(h->gg)	3.7	14.1	7.5		
σ (WW)BR(h->other)	4.8	32.7	fix		



More Bins

> Using a single bin for the main part of the data means losing information


- Especially in the region for low flavor likeness (gluons)
- Different slopes for the single contributions visible in b-likeness

bb separated from the rest for small c likeness

Limited MC Statistics

- Splitting the MC events into two subsets, the SM could not be reproduced for cc and other (fit values deviated from 1)
- Large fluctuations visible in the peak of the c-likeness due to limited MC statistics (also with courser binning, trust me)
- Reminder: this is smeared in two more dimensions for the fit

Limited MC Statistics

	Number of MC events (L=1/ab) P(e-e+)=(-1,1)								
nnH	166000								
H -> g,b,c	115000								
	30 % for TMVA	70% for Fit	L=330/fb P(e-e+)=(-0.8,0.3)						
H -> g,b,c	34500	80500	22300						
H->bb	28950	67500	18700						
H->cc	1300	3050	850						
H->gg	4300	10000	2750						
ZH->nnbb	10500	24500	6850						
ZH->nncc	500	1100	320						
ZH->nngg	1550	3600	1000						
WW->H->bb	18400	43000	11800						
WW->H->cc	850	1950	550						
<mark>WW->H->gg</mark>	2700	6400	1750						

~50% further reduction by event selection

Request for more statistics

- Every template should contain ~10⁴ entries
- Selection efficiency ~50% -> 2*10⁴ events
- From BR: 2*10⁴ H->cc events would mean 42*10⁴ H->bb events
 - Even worse: I would like to have 2*10⁴ events for h->cc from higgs strahlung and WWfusion

Suggestion: production of the single Higgs decays

- e+e- -> nnH -> nnbb Pol(e+,e-)=(-1,1) 20000 events
- e+e- -> nnH -> nncc Pol(e+,e-)=(-1,1) 20000 events
- e+e- -> nnH -> nngg Pol(e+,e-)=(-1,1) 20000 events
- e+e- -> nnH -> nnbb Pol(e+,e-)=(1,-1) 40000 events
- e+e- -> nnH -> nncc Pol(e+,e-)=(1,-1) 40000 events
- e+e- -> nnH -> nngg Pol(e+,e-)=(1,-1) 40000 events
- Total 180000 events
- Either way: new generator files needed

BACKUP

Results

> As a consistency check: Branching ratio from event counting of single processes (SID) $\sigma(H \rightarrow ff) = \frac{\sqrt{N_{Signal} + N_{BKG}}}{N_{signal}}$

- The results are gained using the same data set for the toy MC histogram and the Template histograms
- Splitting the MC events into two subsets, the SM could not be reproduced for cc and other (fit values deviated from 1)

	Pol (e-;e+) = (-0.8;0.3)		preliminary		LOI
	previously shown	with minmal binning	with minmal binning	with single BDT	
σ (ZH)BR(h->bb)	1.7	2.3	2.3	2.0	1.4
σ(ZH)BR(h->cc)	7.5	26.9	24.1	21.0	8.6
σ(ZH)BR(h->gg)	4.7	16.2	9.2	8.2	9.2
σ (ZH)BR(h->other)	5.9	38.5	fix		
σ(WW)BR(h->bb)	1.3	1.8	1.8	1.5	
σ(WW)BR(h->cc)	6.0	21.7	18.8	16.7	
σ(WW)BR(h->gg)	3.7	14.1	7.5	5.7	
σ (WW)BR(h->other)	4.8	32.7	fix		

