Higgs Recoil Study

ILC Physics meeting

May 21, 2015

Jacqueline Yan

Current Status & New Activities

- analysis done for Z→mumu channel at ECM = 250 GeV, 350 GeV, 500 GeV
 → results summarized last week
 comparisons made between ECM and polarizations
- reform of analysis codes (~ finished after 1 month)
- studied effect of uncertainty of BG statistics on xsec error

• analysis for $Z \rightarrow ee$ channel at ECM = 250 GeV, 350 GeV

discovered that GPET should not be used reliably for Zee anymore (details coming up)

➔ Making transition to using Kernel estimation function

Compare of results between alternative ECM and polarizations

Ecm=250 GeV		Ecm=350 GeV		Ecm=500 GeV	
(-0.8,+0.3)	3.5%	(-0.8,+0.3)	4.1%	(-0.8,+0.3)	6.1%
(+0.8,-0.3)	3.6%	(+0.8,-0.3)	4.5%	(+0.8,-0.3)	7.2%

Current (April, 2015) xsec precision is improved by 17% from AWLC 2014 (@Fermilab) for ECM=350 GeV Pol (-0.8, + 0.3)

♦ ECM= 250 GeV has 17 % better xsec precision (w.r.t. 350 GeV) higher statistics, better momentum resolution → sharper recoil mass peak

 Pol (+0.8, -0.3) has 10% worse xsec precision although WW BGs significantly suppressed (higher S/B ratio), statistics is lower

At last week's meeting, I received comment about BG statistics

• *is lack of statistics a issue for 500 GeV?* major residual BG have large weights

Investigated error of # of BG based on binomial distribution $\delta \epsilon = \operatorname{sqrt}(\epsilon (1-\epsilon)/N)$ N: # of generated events

for 500 GeV, error of total BG is about 4.4%

- (c.f. Poisson error sqrt(NBG) \sim 1%, But not appropriate for small statistics)
- even larger error for some major BG processes (4f._sl, 2f_l)
- for 250 , 350 GeV, binominal error < 1%, a little less than Poisson error.

I changed the BG level in Toy MC study to test the effect of BG uncertainty on xsec error

- for 500 GeV, only 1.2% effect if BG change by 4.4%
- •only 2.5% even if BG change by as much as 10%
- effect on xsec error is very much negligible for 250 GeV and 350 GeV

	Toy MC						
250GeV							
	nominal BG	BG + 1%	Diff	BG + 4%	Diff	BG + 10%	Diff
xsec error (relative)	3.29	3.29	0.21%	3.31	0.76%	3.35	1.86%
350 GeV							
	nominal	BG + 1%	Diff	BG + 4%	Diff	BG + 10%	Diff
xsec error (relative)	4.19	4.20	0.19%	4.22	0.74%	4.27	1.93%
500 GeV							
	nominal			BG + 4.4%	Diff	BG + 10%	Diff
xsec error (relative)	6.46			6.54	1.24%	6.62	2.48%

similar results if float BG normalization in Toy MC

First results for $Z \rightarrow$ ee channel analysis

 For Zee, due to bremsstrahlung , signal shape is more non-Gaussian (left side of GPET) even if brem recovery is implemented

- GPET should no longer be used, even for statistical error study
- •for 250 GeV, maybe still OK (?)
- problem gets serious for 350 GeV (also issue of interference with ZZ fusion process xsec increasing)

compare dilepton invariant mass distribution

Zee (red) VS

0.12

- Zmumu much sharper
- Zee has a long tail towards large ۲ inv. Mass (ZZ fusion)

Xsec error (Toy MC) 250 GeV • 3.6% if fix BG • 4.9% if float BG

Xsec error (Toy MC) 350 GeV

• 7.4 % if float BG

combined stat error of both leptonic channels

<u>250 GeV;</u>

2.4% (Zmumu: 3.3% and Zee: 3.6%)
(fix BG in Toy MC)
2.8% (Zmumu: 3.4% and Zee 4.9%)

(float BG)

<u>350 GeV:</u> <u>3.6%</u> (Zmumu : 4.1% and Zee: 7.4%) (float BG)

Conclusions

- Checked effect of BG statistics on xsec error
- first results for Z→ee channel
- realized limitation of GPET for Zee at 350 GeV
- analysis code has been improved for better efficiency

<u>Plans</u>

analysis for Z→mumu and Z→ee channel at ECM = 250 GeV, 350 GeV, 500
 GeV using Kernel estimation function

combine both leptonic channels for a reliable estimate of statistical errors at each ECM

• also do analysis for **ZZ fusion process**

study systematic errors

BACKUP

350 GeV, Zee

						Reductio	on Table			
						Neuberin				
Process	:	2f_l	2f_h	4f_l	4f_sl	4f_h	BG	เนษ	Signal	Signf
Cross Section	:	33504.6	38610.7	4901.08	14500.1	12561.9	104078	23.9705	10.2442	
Generated	:	4.90006e+06	2.48454e+06 3	3.98801e+06 5.	30646e+06 2.7	0846e+06 1.	.93875e+07	68024	29426	
Expected	:	1.1157e+07	1.28574e+07	1.63206e+06	4.82853e+06	4.18311e+6	06 3.46581e+	07 7982.	19 3411.	31 0.579387
Cut0	:	1.56517e+06	74.2882	150510	69264.6	11.2676 1.	.78503e+06	4711.27	2566.47	1.91841
Cut1	:	1.16873e+06	74.2882	111383	48096	11.2676 1	.32829e+06	2577.83	2561.67	2.22052
Cut2	:	567876	47.6625	59965.9	33841.7	3.96336	661735	2262.91	2254	2.76612
Cut3	:	335754	47.6625	49592.2	27719	3.96336	413117	2218.99	2210.28	3.42963
Cut4	:	230057	38,9425	33285.5	22464.7	1.68706	285847	2085.73	2082.29	3.88057
Cut5	:	220309	38,9425	32570.2	21271	1.68706	274190	2077.89	2074.45	3.94674
Cut6	:	95460.1	38.9425	32225	21212.2	1.68706	148938	2076.85	2073.41	5.33551
Cut7	:	41891.1	23.3655	21838.4	12537	0	76289.9	1944.41	1940.97	6.93938
Cut8	:	4936.97	9	3599.67	6008.8	0	14545.4	1533.95	1532.17	12.0829
Cut9	:	2087.62	9	1769.2	3202	0	7058.82	1206.78	1206.77	13.2735
Cut10	:	942.706	6 0	579.292	984.066	0	2506.06	859.039	859.039	14.8086

Process	:	2f_l	2f_h	4f_l	4f_sl	4f_h	BG	ιιн	Signal	Signf	
Cross Section	:	38177.2	78046.5	5655.66	18398.1	16799.7	157077	31.7221	10.9174		
Generated	:	5.76948e+06	3.17329e+06 3	3.14632e+06	4.9795e+06 2.7	4204e+06 1.9	8106e+07	86948	30756		
Expected	:	9.54431e+06	1.95116e+07	1.41391e+06	4.59952e+06	4.19993e+06	3.92693e+	07 7930.	54 2729	.34 0.435499	
Cut0	:	2.54509e+06	221.59	223999	73635.1	4.57566 2.8	4295e+06	4829.89	2406.51	1.42605	
Cut1	:	1.92046e+06	221.59	161009	50130	4.57566 2.1	3182e+06	2417.64	2403.33	1.6451	
Cut2	:	862240	149.727	99861.4	36498.1	2.30532	998752	2320.92	2308.27	2.30704	
Cut3	:	419821	69.2392	46120.3	25465.9	0	491476	2239.46	2236.27	3.18263	
 Cut4	:	367393	57.5536	38397.4	19471.4	0	425320	2235.65	2232.46	3.41419	
 Cut5	:	108946	57.5536	38024.3	19414.1	0	166442	2234.27	2231.23	5.43273	
 Cut6	:	66109.5	57.5536	37622.4	19314.4	0	123104	2228.86	2225.82	6.28721	
 Cut7	:	27381.2	46.7425	28376.9	12826.5	0	68631.4	2069.14	2066.11	7.77036	
 Cut8	:	7574.79	1.74909	11273.2	7972.55	0	26822.3	1873.97	1871.4	11.0472	
 Cut9	:	5336.31	1.74909	8727.95	4683.21	0	18749.2	1867.4	1864.83	12.9876	
 Cut10		1739.49	0.874544	3692.96	1502.16	0	6935.48	1685.36	1684.43	18.1417	

BG level fluctuation is controlled by fitting recoil mass over a wide range (100 - 160 GeV)

This is an improvement from previous studies

- BG level is usually fixed for Toy MC (optimistic scenario)
- xsec error is about 10 % worse if we float BG (pessimistic scenario) not a big degradation since I fit recoil mass spectrum over a wide range GOOD

$$\Delta \sigma / \sigma \text{ (fix BG)}$$

$$= 4.07 \%$$

$$\Delta \sigma / \sigma \text{ (float BG)}$$

$$= 4.46 \%$$

Measures were taken to prevent signal bias i.e. Higgs decay mode dependence

• the "traditional" dptbal (= $|Pt,dl| - |Pt, \gamma|$) cut

for removing 2f BG (γ back-to back w.r.t. di-lepton) used to be a concern for signal bias (esp. H $\rightarrow \tau \tau$, H $\rightarrow \gamma \gamma$)

isolated photon finder:

NEW

confirms almost all γ we look at have small cone energy) i.e. not from Higgs decay

Owing to the improved data selection methods,

Higgs decay mode dependence is minimized

Shows effect of isolated γ finder

Research Plan

(ongoing and in near future)

recoil mass study using leptonic channels
 e+e- → ZH → μ+μ-H (e+e-H)

at alternative center of mass energies (ECM) and beam polarization

<u>Goal</u>:

precise model-independent measurement of absolute Higgs cross section a "must-have" for measurement of total Higgs width and Higgs couplings

- study impact of ECM and polarization on precision of σ_{zH} and m_{h}

→ contribute to decision for ILC run scenario

Signal signature

a pair of isolated energetic muons with di-lepton invariant mass ($M_{\mu+\mu}$) close to Z mass

Dominant backgrounds

- e+ e- \rightarrow Z Z \rightarrow μ + μ X : forward Z production angle
- e+ e- $\rightarrow \gamma Z \rightarrow \gamma \mu$ + μ : energetic γ , pt balanced with di-lepton
- e+ e- \rightarrow W W \rightarrow μ + μ v v : broad M_{μ + μ -} distr.

recoil mass effective for cutting BG

Muon Candidate Selection

opposite +/- 1 charge

• E_cluster / P_total < 0.5

isolation (small cone energy)

ightarrow removes nearly all 4f_WW_sI BG

- Minv closest to Z mass
- cos(track angle) < 0.98 & |D0/δD0| < 5

Final Selection

•73 < GeV < M_inv < 120 GeV

• 10 GeV < pt_mumu < 140 GeV

•
$$\left| \overrightarrow{P_{t,sum}} \right| \circ \left| \overrightarrow{P_{t,g}} + \overrightarrow{P_{t,dl}} \right| > 10 \text{ GeV}$$

• |cos(θ_Zpro)| < 0.9

•120 GeV < Mrecoil < 140 GeV

L kelihood cut

ECM=350 GeV, (-0.8,+0.3)

Data selections done in a way to guarantee Higgs decay mode independence

Optimized in terms of signal significance and xsec measurement precision

definition

- M_inv : invariant mass of 2 muons
- pt_mumu : pt of reconstructed muons
- pt,γ : pt of most energetic photon
- θ_Zpro = Z production angle
- Use info of cone energy around most energetic gamma
- \rightarrow cut 2f_Z BG using info on pt_ γ while prevent bias on signal

In red box: key improvement points w.r.t. previous studies

similar methods for other ECM and polarizations

_		Nsig	Nbg		S/B ratio	significance	sig ((bef	eff fore Mrec)			
	Ecm=350 GeV	•	-			-				Perform	mance of
_	(-0.8,+0.3)	1172	2068	3	0.57	20.6	51%	(83%)		data s	election
_	(+0.8 -0.3)	776	774		1.00	19.7	498	(83%)	-		
-	(*0.0, 0.0)				1.00	10.7		. (00///			
_											
Ecm=250 GeV					0.56	23.8	619	(72%)			
_	(0.0,+0.3)	1078	203		0.00	20.0	013	(12%)			
	(+0.8,-0.3)	1182	1182	2	1.00	24.3	68%	(72%)			
						1	' I				
						original		after		after	final
	dominant	BG after		pol: (-	0.8,+0.3)			inv. ma	ass	Pt,sum cut	
Í	inal selec	tion						pt_dl (cut		
(Mrec 120-	-140 GeV +	-	signal		2288		20	04	2003	1172
	_ikelihood	cut)									
			4	4f_ZZ_	sl	188125		169	962	16924	989
Balanced pt of γ and di-lenter				4f_ZZWWMix_I		541187		192	295	19225	325
				2f_Z_I		2227000		853	335	21246	269
	solated ler	oton finder		4f_WW	_sl	2732980		1	7	17	0

Toy MC study results Fitted Higgs mass

Statistical error (RMS) is :

105 MeV (0.08%) for ECM=350 GeV

and

39 MeV (0.03%) for ECM=250 GeV

systematic bias of fitted mass still need to be studied

recoil mass [GeV]

fit MC hist with same function as "data" \rightarrow get Nsig,

If we ignore issue of $H*\rightarrow WW$ peak beyond 160 GeV threshold and fit in a wider range for 500 GeV

Fitting over a wider range 115 - 225 GeV

Better xsec error in this case $\sim 5\%$ we can still achieve this if we use the appropriate fitting function (?)

Recently I have analyzed 500 GeV results as well

Fitting over a wider range 115 - 225 GeV

From Toy MC study, 500 GeV xsec error 6-8%

Many challenges

- lower signal cross section
- signal peak buried in BG
- •Difficulties in fitting

Zmumu signal xsec •250 GeV : 17.14 fb •350 GeV: 11.31 fb •500 GeV: 5.679 fb (~ 1/2 of 350 GeV, 1/3 of 250 GeV)