Higgs Recoil Study

ILC Physics meeting

May 29, 2015

Jacqueline Yan

Current Status & New Activities

Last week:

- summarized analysis results using GPET for signal fitting
- studied effect of BG MC statistics on xsec measurement
- Discovered limitation of GPET for signal fitting (when applied to Zee channel)

<u>This Week</u>

NEW

transition to Kernel estimation method for signal fitting did analysis for both leptonic channels ($Z \rightarrow$ mumu and $Z \rightarrow$ ee) For ECM = 250 GeV, 350 GeV, 500 GeV

today will show a preliminary version of "leptonic channel statistical error study results"

(-0.8,+0.3)		xsec err	mass err [MeV]]
250GeV	Zmm	3.4%	41	
	Zee	4.6%	105	
	Total	2.7%	38	
350GeV	Zmm	4.1%	106	
	Zee	5.9%	237	
	Total	3.3%	97	
500GeV	Zmm	7.0%	565	
	Zee	9.8%	1510	
	Total	5.7%	529	

Statistical error study results Zee and Zmm combined

Systematic error of fitted recoil mass is now negligible (mostly < a few MeV)

c.f. Systematic error due to GPET fitting was 200-300 MeV

Xsec error

- 350 GeV 22% worse w.r.t. 250 GeV
- 500 GeV much worse

Mass error

• 350 GeV worse by factor of < 3

Note) ALCW results was only for Zmm

(+0.8,-0.3)		xsec err	mass err [MeV]	
250GeV	Zmm	3.6%	43.5	
	Zee	4.8%	112	
	Total	2.9%	41	
350GeV	Zmm	4.5%	118	
	Zee	6.6%	350	
	Total	3.7%	111	
500GeV	Zmm	8.0%	677	
	Zee	9.6%	1490	
	Total	6.1%	616	

Assuming the $H*\rightarrow WW$ peak around 160 GeV is negligible

Fitting in wider range (115 – 160 GeV \rightarrow 115 – 250 GeV) improves xsec precision

Zmm 7.0% → 6.6%

Zee 9.8 % → 8.0% *is lack of statistics a issue used to be a concern for 500 GeV?* major residual BG have large weights

At last week's meeting, I reported lack of MC statistic doesn't seem to be an issue

error of # of BG based on binomial distribution $\delta \varepsilon = \operatorname{sqrt}(\varepsilon(1-\varepsilon)/N)$ N: # of generated events

for 500 GeV, error of total BG ~ 4.4% (> Poisson error)

• for 250 , 350 GeV, binominal error is < 1%,

I changed BG level in Toy MC study to test the effect of BG uncertainty

- for 500 GeV, only 1.2% effect on xsec error if BG change by 4.4%
- effect very much negligible for 250 GeV and 350 GeV

compare dilepton invariant mass distribution

Zee (red) vs Zmumu (blue)

Next steps

• Kernel function fitting still need to be confirmed

How can we improve xsec precision even further ?

- use Ratio of signal likelihood and BG likelihood (instead of only signal Likelihood)
 → already tried, no improvement (?)
- Attempt to measure mass using only H→bb mode much lower BG , so better precision ?

Ratio of signal Likelihood to BG likelihood

Template formed using Minv, CosZ, Pt_dl

BACKUP

Compare of results between alternative ECM and polarizations

Ecm=250 GeV		Ecm=350 GeV		Ecm=500 GeV	
(-0.8,+0.3)	3.5%	(-0.8,+0.3)	4.1%	(-0.8,+0.3)	6.1%
(+0.8,-0.3)	3.6%	(+0.8,-0.3)	4.5%	(+0.8,-0.3)	7.2%

Current (April, 2015) xsec precision is improved by 17% from AWLC 2014 (@Fermilab) for ECM=350 GeV Pol (-0.8, + 0.3)

♦ ECM= 250 GeV has 17 % better xsec precision (w.r.t. 350 GeV) higher statistics, better momentum resolution → sharper recoil mass peak

 Pol (+0.8, -0.3) has 10% worse xsec precision although WW BGs significantly suppressed (higher S/B ratio), statistics is lower

I changed the BG level in Toy MC study to test the effect of BG uncertainty on xsec error

- for 500 GeV, only 1.2% effect if BG change by 4.4%
- •only 2.5% even if BG change by as much as 10%
- effect on xsec error is very much negligible for 250 GeV and 350 GeV

	Toy MC						
250GeV							
	nominal BG	BG + 1%	Diff	BG + 4%	Diff	BG + 10%	Diff
xsec error (relative)	3.29	3.29	0.21%	3.31	0.76%	3.35	1.86%
350 GeV							
	nominal	BG + 1%	Diff	BG + 4%	Diff	BG + 10%	Diff
xsec error (relative)	4.19	4.20	0.19%	4.22	0.74%	4.27	1.93%
500 GeV							
	nominal			BG + 4.4%	Diff	BG + 10%	Diff
xsec error (relative)	6.46			6.54	1.24%	6.62	2.48%

similar results if float BG normalization in Toy MC

Signal signature

a pair of isolated energetic muons with di-lepton invariant mass ($M_{\mu+\mu}$) close to Z mass

Dominant backgrounds

- e+ e- \rightarrow Z Z \rightarrow μ + μ X : forward Z production angle
- e+ e- $\rightarrow \gamma Z \rightarrow \gamma \mu$ + μ : energetic γ , pt balanced with di-lepton
- e+ e- \rightarrow W W \rightarrow μ + μ v v : broad M_{μ + μ -} distr.

recoil mass effective for cutting BG

Muon Candidate Selection

opposite +/- 1 charge

• E_cluster / P_total < 0.5

isolation (small cone energy)

ightarrow removes nearly all 4f_WW_sI BG

- Minv closest to Z mass
- cos(track angle) < 0.98 & |D0/δD0| < 5

Final Selection

•73 < GeV < M_inv < 120 GeV

10 GeV < pt_mumu < 140 GeV

•
$$\left| \overrightarrow{P_{t,sum}} \right| \circ \left| \overrightarrow{P_{t,g}} + \overrightarrow{P_{t,dl}} \right| > 10 \text{ GeV}$$

• |cos(θ_Zpro)| < 0.9

•120 GeV < Mrecoil < 140 GeV

L kelihood cut

ECM=350 GeV, (-0.8,+0.3)

Data selections done in a way to guarantee Higgs decay mode independence

Optimized in terms of signal significance and xsec measurement precision

definition

- M_inv : invariant mass of 2 muons
- pt_mumu : pt of reconstructed muons
- pt,γ : pt of most energetic photon
- θ_Zpro = Z production angle
- Use info of cone energy around most energetic gamma
- \rightarrow cut 2f_Z BG using info on pt_ γ while prevent bias on signal

In red box: key improvement points w.r.t. previous studies

similar methods for other ECM and polarizations

Toy MC study results Fitted Higgs mass

Statistical error (RMS) is :

105 MeV (0.08%) for ECM=350 GeV

and

39 MeV (0.03%) for ECM=250 GeV

systematic bias of fitted mass still need to be studied

recoil mass [GeV]

fit MC hist with same function as "data" \rightarrow get Nsig,