Higgs Recoil Study

ILC Physics meeting

June 5, 2015

Jacqueline Yan

Current Status & New Activities

Last week:

 showed first results of ZH analysis using Kernel function fitting (for all leptonic channels, ECM, and beam polarization)

This Week

NEW

• observed in detail fitting of "data" (c.f. last week's results based on Toy MC)

 signal: Kernel function : no big problem, but need to adjust to appropriate Kernel width, otherwise will affect mass stat error

• BG: need to select 2nd order or 2rd order polynomial case by case

assess residual 2f BG issue for Zee at ECM = 350 GeV, 500 GeV

(-0.8,+0.3)		xsec err	mass err [MeV]]
250GeV	Zmm	3.4%	41	
	Zee	4.6%	105	
	Total	2.7%	38	
350GeV	Zmm	4.1%	106	
	Zee	5.9%	237	
	Total	3.3%	97	
500GeV	Zmm	7.0%	565	
	Zee	9.8%	1510	
	Total	5.7%	529	

Statistical error study results Zee and Zmm combined

Systematic error of fitted recoil mass is now negligible (mostly < a few MeV)

c.f. Systematic error due to GPET fitting was 200-300 MeV

Xsec error

- 350 GeV 22% worse w.r.t. 250 GeV
- 500 GeV much worse

Mass error

• 350 GeV worse by factor of < 3

Note) ALCW results was only for Zmm

(+0.8,-0.3)		xsec err	mass err [MeV]	
250GeV	Zmm	3.6%	43.5	
	Zee	4.8%	112	
	Total	2.9%	41	
350GeV	Zmm	4.5%	118	
	Zee	6.6%	350	
	Total	3.7%	111	
500GeV	Zmm	8.0%	677	
	Zee	9.6%	1490	
	Total	6.1%	616	

Date

(189 250 GeV

150

160

Things began to get difficult for Zee at 350 GeV

as well as both Zmm and Zee for 500 GeV

- wider recoil mass peak \rightarrow need to adjust Kernel width
- low significance \rightarrow need to improve BG rejection
- low MC statistics \rightarrow need to investigate the effect

Realized 2f_z_bhabhag BG dominates residual BG (> 40%) in 100-160 GeV Mrecoil fitting region for Zee at ECM >= 350 GeV

✤ Why a problem ?

esp. for or right polarization , small MC statistics \rightarrow large weights, stat error > 20% (e.g. 2f_bb_rl : weight \sim 19 !!) Poor BG fitting \rightarrow degrades reliability of Toy MC results for xsec error

Need to confirm impact of MC statistics on xsec error for Zee channel as well !! whole BG shape is changed due a particular BG maybe only change the amount of 2f_bb BG (?)

Tentative solution: use Ebal cut and (later on) try cosθmiss cut

Most of today's talk will be about understanding the nature of this 2f_bb BG in order to achieve further rejection

Muon Candidate Selection

opposite +/- 1 charge

E_cluster / P_total < 0.5

• isolation (small cone energy)

ightarrow removes nearly all 4f_WW_sl BG

- Minv closest to Z mass
- cos(track angle) < 0.98 & |D0/δD0| < 5

Final Selection

•73 < GeV < M_inv < 120 GeV

• 10 GeV < pt_mumu < 140 GeV

•
$$\left| \overrightarrow{P_{t,sum}} \right| \circ \left| \overrightarrow{P_{t,g}} + \overrightarrow{P_{t,dl}} \right| > 10 \text{ GeV}$$

• |cos(θ_Zpro)| < 0.9

•120 GeV < Mrecoil < 140 GeV

• Likelihood cut

ECM=350 GeV, (-0.8,+0.3)

2f BG are being removed ina way to guarantee Higgs decay mode independence

Optimized in terms of signal significance and xsec measurement precision

definition

- M_inv : invariant mass of 2 muons
- pt_mumu : pt of reconstructed muons
- pt,γ : pt of most energetic photon
- θ_Zpro = Z production angle
- Use info of cone energy around most energetic gamma
- \rightarrow cut 2f_Z BG using info on pt_ γ while prevent bias on signal

This Ptsum cut seemed not as effective as expected for Zee at 350 GeV (c.f. Was very good for Zmm)

350 GeV, Zee (+0.8,-0.3)

By applying cut Ebal < 260 GeV (Ebal = Eγ + Edl)

2f_z_leptonic BG Reduced greatly 820 → 186

signal lost < 2 events

By applying cut Ebal < 260 GeV: $2f_z$ leptonic BG reduced greatly : $820 \rightarrow 186$

	Before Eba	al cut									
Cut9	:	 820.846	0	338.834	780.718	0	1940.4	604.486	604.31	11.9791	
		2f BG		4f_sl	4f_l		Total BG		Higgs		
	After Ebal o	cut									
Cut9	:	186.321	0	332.587	778.278	0	1297.19	603.654	603.478	13.8417	
		2f BG		4f_sl	4f_l		Total BG		Higgs		
		,	•					sig 1 (gnal lost event	only	

so far

Ptsum discrepancy seems explained by
Energy is not measured ideally due to leptons lose energy due to brem
Obviously brem recovery is not perfect

MC truth is much more back-toback (as expected)

How to explain the long isotropic tail for Reco ?

From here on we will investigate the reason for the non-back-to-back ness

especially the long isotropic tail

energy mis-measurements explain ONLY A PART of discrepancy in non - BTB ness

- leptons lose energy due to brem
- Photons go very forward to beampipe or dead regions of detector

Other parts : angle resolution (?), More than 1 hard ISR photon (still needs confirmation)

Elep1mc-Elep1 {Minv>78&&Minv<120&&Ptdl>10&&Ptcl<140&&leptype==11&&(Ptsum<0)|Ptsum>10)}

Angle ϕ in x-y plane

acos(CosFZ) (Minv>78&&Minv<120&&Ptdl>10&&Ptdl<140&&leptype==11&&(Ptsum<0)[Ptsum>10)&&Ptsum>0)

Angle precision seems not too bad for lepton and photon

(photon slightly worse)

Only events with non-"back-toback" ness (angle < 2.5 rad)

Not well measured dilepton energy: 60%

brem explains part of non-"BTB"

Not well measured γ energy: 55%

Only events with non-"back-toback" ness (angle < 2.5 rad)

Not well measured dilepton angle : 40%

events with non-"backto-back" ness (angle < 2.5rad) and well measured dilepton energy and angles

120

100

80

60

40

20

0

20

Conclusion

- For fitting recoil mass: need to adjust fitting function case by case
- Signal : Kernel width
- BG: 3rd order or 2nd order polynomial

important for reliable Toy MC study of xsec and mass precision

- effort ongoing to understand and eliminate 2f BG
- these are an issue for Zee at higher ECM
- brem and energy mis-measurement make some cuts difficult

Plans and Goals:

- further rejection of BG for Zee channel
- investigate effect of low MC statistics on xsec for Zee
- establish best fitting method (polynomial, Kernel width) for each ECM and lepton channel, move towards finalizing statistical error study

BACKUP

No clear correlation between energy mis-measurement and angle mis-measurement

similarly distribution of Ebal = Eγ + Edl is affected by leptons which lost energy due to brem

for events after Ptsum cut 2f_bb

350 GeV

Zmm (-0.8, -+0.3)

but wider Kernel width doesn't go well for sharp peaks

Process	:	2f_l	2f_h	4f_l	4f_sl	4f_h	BG	ιιн	Signal	Signf
Cross Section	:	31457.1	22965.7	1483.22	1700.82	1114.1	58720.9	15.9295	6.67532	
Generated	:	4.90006e+06	2.48454e+06	3.98801e+06 5	.30646e+06 2.	70846e+06	1.93875e+07	68024	29426	
Expected	:	1.04752e+07	7.64759e+06	493911	566373	370	996 1.95541	e+07 5304	1.53 2222	.88 0.502619
Cut0	:	1.26161e+06	74.2555	55581.3	41944	1.22808	1.35921e+06	3132.19	1681.56	1.44068
Cut1	:	1.01279e+06	74.2555	40741.9	31587.5	1.22808	1.08519e+06	1689.41	1678.8	1.61031
Cut2	:	589076	18.8311	23488.6	23925.8	1.09388	636511	1552.05	1544.1	1.93305
Cut3	:	291280	11.0465	16381.1	15474.5	1.09388	323148	1548.71	1540.95	2.70427
Cut4	:	147624	2.32989	8872.17	9543.16	0.100935	166042	1400.7	1398.38	3.41738
Cut5	:	147283	2.32989	8797.3	9386.21	0.100935	165469	1396.99	1394.67	3.4142
 Cut6	:	 96920.4	2.32989	8574.72	9342.89	0.100935	114840	1396.68	1394.36	4.08979
 Cut7	:	42346	1.39794	4569.24	4994.47	0	51911.2	1304.85	1302.53	5.64635
 Cut8	:	1237.72	0	425.847	926.741	0	2590.31	669.283	668.731	11.7131
Cut9	:	820.846	0	338.834	780.718	0	1940.4	604.486	604.31	11.9791
Cut10	:	212.315	5 0	101.49	240.328	e	554.133	452.202	452.202	14.2548

Process	:	2f_l	2f_h	4f_l	4f_sl	4f_h	BG	11H	Signal	Signf	
Cross Section	:	31457.1	22965.7	1483.22	1700.82	1114.1	58720.9	15.9295	6.67532		
Generated	:	4.90006e+06	2.48454e+06	3.98801e+06 5.	30646e+06 2.	70846e+06 1	.93875e+07	68024	29426		
Expected	:	1.04752e+07	7.64759e+06	493911	566373	3709	96 1.95541e	+07 5304	.53 2222	.88 0.502619	
 Cut0	:	1.26161e+06	74.2555	55581.3	41944	1.22808 1	.35921e+06	3132.19	1681.56	1.44068	
 Cut1	:	1.01279e+06	74.2555	40741.9	31587.5	1.22808 1	.08519e+06	1689.41	1678.8	1.61031	
Cut2	:	589076	18.8311	23488.6	23925.8	1.09388	636511	1552.05	1544.1	1.93305	
Cut3	:	291280	11.0465	16381.1	15474.5	1.09388	323148	1548.71	1540.95	2.70427	
Cut4	:	147624	2.32989	8872.17	9543.16	0.100935	166042	1400.7	1398.38	3.41738	
 Cut5	:	147283	2.32989	8797.3	9386.21	0.100935	165469	1396.99	1394.67	3.4142	
 Cut6	:	67866.8	2.32989	8384.68	9284.03	0.100935	85537.9	1394.87	1392.55	4.723	
Cut7	:	31080.5	1.39794	4477.15	4967.22	0	40526.2	1303.04	1300.72	6.35981	
 Cut8	:	339.534	0	415.929	923.908	0	1679.37	668.451	667.899	13.7841	
 Cut9	:	186.321	0	332.587	778.278	0	1297.19	603.654	603.478	13.8417	
Cut10	:	23.9965	i 0	98.1336	239.188	0	361.318	451.769	451.769	15.8434	

Angle resolution seems worse (broader distr) for photon than for lepton

1, APec

$for \ e^{(Eisr3mc-Echotonmax):Ptsum (Minv=73&&Minv=120&&Ptd]>10&&Ptd]<140&&leptype==11&&(Ptsum<0)|Ptsum>10)}{for \ events \ that \ survive \ up \ to \ Ptsum \ cut$

for events that survive up to Ptsum cut

Assuming the $H*\rightarrow WW$ peak around 160 GeV is negligible

Fitting in wider range (115 – 160 GeV \rightarrow 115 – 250 GeV) improves xsec precision

Zmm 7.0% → 6.6%

Zee 9.8 % → 8.0% compare dilepton invariant mass distribution

Zee (red) vs Zmumu (blue)

Compare of results between alternative ECM and polarizations

Ecm=250 GeV		Ecm=350 GeV		Ecm=500 GeV	
(-0.8,+0.3)	3.5%	(-0.8,+0.3)	4.1%	(-0.8,+0.3)	6.1%
(+0.8,-0.3)	3.6%	(+0.8,-0.3)	4.5%	(+0.8,-0.3)	7.2%

Current (April, 2015) xsec precision is improved by 17% from AWLC 2014 (@Fermilab) for ECM=350 GeV Pol (-0.8, + 0.3)

♦ ECM= 250 GeV has 17 % better xsec precision (w.r.t. 350 GeV) higher statistics, better momentum resolution → sharper recoil mass peak

 Pol (+0.8, -0.3) has 10% worse xsec precision although WW BGs significantly suppressed (higher S/B ratio), statistics is lower