HIGGS SELF-COUPLING ANALYSIS WITH $H \rightarrow WW^*$

Masakazu Kurata 06/05/2015

STATUS

• Vertex finding

- Using nnH sample
- Check using b jets & c jets in more simple situation
- Compare Nominal & AVF+BNess algorithm
- check BNess tagger fake track rejection bias(ongoing)

• Study for jet clustering

- Study jet structure
- Trying to distinguish quark & gluon jets
- Trying to use color dipole based jet clustering
- Just start trial
- So far, no improvement can be obtained...

VERTEX FINDING OF CJETS
Common parameters are set at same values for comparison

- Same event sample(nnH sample) 99432 events
 - $H \rightarrow cc: 6461 \text{ events}$

• 2 jet clustering, jet matching with MCtruth is performed

method	cjet with 2vtx	cjet with 1+1vtx	cjet with 1vtx	total
Nominal Algorithm	43	165	6537	6745
AVF&BNess	84	215	6960	7259

- Total: \sim 7% increased
- Vertex mis-ID eff. is increased(but, 2vtx jet has pure vertices)
 - Though num. of vertices is small
 - \rightarrow need additional selection for singletrk? (e.g.)vertex mass?)

method	cjet with 2vtx	cjet with 1+1vtx	cjet with 1vtx	
Nominal Algorithm	0.00 ± 0.00	$0.012 {\pm} 0.006$	0.0014 ± 0.004	
AVF&BNess	0.00 ± 0.00	$0.018 {\pm} 0.007$	0.0013 ± 0.004	

VERTEX FINDING OF BJETS IN SIMPLE SITUATION

- Common parameters are set at same values for comparison
- Same event sample(nnH sample) 99432 events
 - $H \rightarrow bb: 55474 \text{ events}$
- 2 jet clustering, jet matching with MCtruth is performed
- Num. of vertices

method	bjet with 2vtx	bjet with 1+1vtx	bjet with 1vtx	total
Nominal Algorithm	28215	24049	35616	87880
AVF&BNess	36841	17755	36588	91184

- This case, Total: $\sim 4\%$ increased
- Jets with 2vtx are drastically increased(~26%): move from 1+1
- Jets with 1vtx slightly increased
- Fake rate per vtx: in this case, a little worse(need opt.)
 - Due to single trk vertices? \rightarrow under investigation

method	bjet with 2vtx	bjet with 1+1vtx	bjet with 1vtx
Nominal Algorithm	0.009 ± 0.0004	0.005 ± 0.0005	0.011 ± 0.005
AVF&BNess	0.011 ± 0.0004	$0.008 {\pm} 0.0005$	0.011 ± 0.005

TRYING DIPOLE BASED JET CLUSTERING

- jet clustering is $2 \rightarrow 1$ clustering
- But in dipole based clustering, $3\rightarrow 2$ clustering performed
 - So, will include color dipole information
 - Especially, soft gluon emission
- This is called DICLUS
 - Construct this procedure and try jet clustering using DICLUS
 - Is there some hint for better jet clustering?
 - Distance variable: transverse momentum in rest frame of 3 jets

$$p_{\perp i(jk)}^2 = \frac{(s_{ji} - (m_i + m_j)^2)(s_{ik} - (m_i + m_k)^2)}{s_{ijk}}$$

- Choose 3 jets combination with smallest pt²
- And re-cluster these 3 jets in rest frame(re-cluster from track level)
- Finally, boost back those re-clustered jets

JET DISTRIBUTION EVENT BY EVENT

- First trial, check jet direction event by event
- Using qqHH→qqbbbb events, 6 jet clustering
- These are good events for DURHAM clustering
- Slight difference, but not so bad
- Jet situation is very complicated, so only one method will not be better jet clustering
 - Hybrid method will be better
 - DICLUS is not good when pt² is large
 - Quark&gluon jet info?
- Need more study
 - jet energy resolution, etc.

DICLUS DURHAM TRUTH