Track Creation/ Selection in Pandora

High Level Reconstruction Workshop Boruo Xu - University of Cambridge

Notes

- Comments from John Marshall and Mark Thomson:
- One needs to be extremely careful regarding track selection. A very long time has been spent on understanding the details of tracking failures.
- Re-evaluating this would probably be a good idea. It would, however, probably be a substantial task.

Minor note:

• All numbers in the following slides are configurable. I put the number there instead of the variable for clarity.

Notes II

- Only proper reference for this is the C++ implementation and then provide some links to the viewvc pages for:
- The MarlinPandora -> TrackCreator
- The TrackPreparationAlgorithm
- The PfoConstructionAlgorithm
- The TrackCreator is responsible for deciding which tracks are passed to Pandora (all, unless they fail cuts on the number of track hits) and setting the track usage flags.

Basic logic

• if (nTrackHits < **minTrackHits** OR nTrackHits > 5000):

- Discard the track. It is not in the Pandora Track list
- Otherwise: track is in the **Pandora Track list**

In Pandora Track List:

- A track object has boolean flags canFormPfo and canFormClusterlessPFO
- A track would ONLY become part of PFO if:
 - canFormClusterlessPFO = True, OR
 - canFormPfo = True AND the track has associate cluster(s)

Set track flags

- If track doesn't reach calorimeter OR a track is a parent track(has daughters), don't set flags.
- The track is still in the track list, but won't be used to form PFO
- This is because they are subsequently handled by the two algorithms in Pandora. These use tricky recursive functions to navigate the track relationships.
- The idea is that a good quality daughter track, reaching the calorimeter, will pick-up an associated cluster. The final Pfo will include both the daughter and parent tracks, plus the cluster. There is then a set of rules for extracting the Pfo properties from these constituents.
- Otherwise...

Set track flags II

If track doesn't pass QualityCuts:

- Set canFormPfo if track is a daughter track OR track is a VO
- Otherwise, set **canFormPfo** under conditions:
 - if (d0 < 50 AND z0 < 50 AND rInner < TPCinnerRadius + 50), OR</p>
 - If passRzQualityCuts AND UseNonVertexTracks[True], OR
 - If track is a daughter track OR track is a V0
- D0 = absolute value of the 2D impact parameter w.r.t (0,0)
- Z0 = absolute value of the z coordinate at the 2D distance of closest approach
- rInner = minimum radius in x-y plane of track hits, sqrt(x^2+y^2)

Set track flags II

- If track doesn't pass QualityCuts...
- Otherwise, set canFormPfo under conditions...
- At same time, set canFormClusterlessPfo under conditions:
 - If UseUnmatchedVertexTracks[True] AND trackEnergy<5:</p>
 - if (d0 < 5 AND z0 < 5 AND rInner < TPCinnerRadius + 50), OR</p>
 - If passRzQualityCuts AND UseNonVertexTracks[True] AND UseUnmatchedNonVertexTracks[False], OR
 - If track is a daughter track OR track is a VO
- D0 = absolute value of the 2D impact parameter w.r.t (0,0)
- **ZO** = absolute value of the z coordinate at the 2D distance of closest approach
- rInner = minimum radius in x-y plane of track hits, sqrt(x^2+y^2)

End of track creation

- Set other track parameters
- End of track creation
- Following slides are definitions of variables used previously.

Calculate minTrackHits

If (track_tan(Lambda)) <= tan(Lambda)FTD:</pre>

minTrackHits = 5

Otherwise:

- If (track_tan(Lambda)) > tan(Lambda)FTD:
 - Count layers [ExpectedFTDHits] which track_tan(Lambda) in between tan(Lambda) FTD for inner radius and outer radius
- minTrackHits = max(5, ExpectedFTDHits)
- tan(Lambda)FTD = FTD Z Position / FTD outer Radius

Terminology

- DO = absolute value of the 2D impact parameter w.r.t (0,0)
- **ZO** = absolute value of the z coordinate at the 2D distance of closest approach
- rInner = minimum radius in x-y plane for all track hits, sqrt(x^2+y^2)
- zMin = absolute value of minimum Z distance for all track hits

passRzQualityCuts

- passRzQualityCuts = True, if:
 - zMin < zCutForNonVertexTracks, AND</p>
 - rInner < TPCinnerRadius + 50</p>
- zCutForNonVertexTracks = TPCinnerRadius * |pZ / pT| + 50
- **pT** = momentum at the distance of closet approach in x-y plane
- pZ = momentum at the distance of closet approach in z direction

PassesQualityCuts

False if:

- If the distance of trackState at calorimeter to IP < 100, OR</p>
- If track_Omega = 0 (Omega is the signed curvature of the track in [1/mm]. The sign is that of the particle's charge.), OR
- If sigmaPOverP > 0.15
- True if:
 - Momentum | at distance of closet approach <= 1</p>
- If |Momentum| at distance of closet approach > 1
 - False if:
 - If pT = 0 OR pZ = 0 OR RadiusOfInnermostHit = TPCouterRadius, OR
 - if nTpcHits < minTpcHits AND nFtdHits < 2</p>
- Otherwise, if it is not set to False, return True

Terminology II

- sigmaPOverP = sqrt(track->getCovMatrix()[5] / |track_Omega|)
 - getCovMatrix() Covariance matrix of the track parameters.Stored as lower triangle matrix where the order of parameters is: d0, phi, omega, z0, tan(lambda). So we have cov(d0,d0), cov(phi, d0), cov(phi, phi), ...
- nTpcHits = track->getSubdetectorHitNumbers, get TPC part
- nFtdHits = track->getSubdetectorHitNumbers, get FTD part
- minTpcHits = nExpectedTpcHits*0.2

nExpectedTpcHits

• nExpectedTpcHits = tpcMaxRowNumber * frac, if:

- **pZ** < (tpcZmax / tpcOuterRadius * **pT**)
 - Frac = (tpcOuterRadius innerExpectedHitRadius) / (tpcOuterRadius tpcInnerRadius)
 - innerExpectedHitRadius = max(tpcInnerRadius, RadiusOfInnermostHit)

nExpectedTpcHits

- [Override above] nExpectedTpcHits = tpcMaxRowNumber * frac2, if:
 - **pZ** <= (tpcZmax / tpcInnerRadius * **pT**) AND **pZ** >= (tpcZmax / tpcOuterRadius * **pT**)
 - Frac2 = (tpcZmax * pT / pZ innerExpectedHitRadius) / (tpcOuterRadius innerExpectedHitRadius
- Override above] nExpectedTpcHits = 0, if:
 - |pZ| / |momentumAtDca| < tpcMembraneMaxZ / tpcInnerRadius