

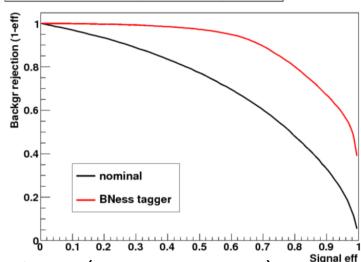
TASK FOR THIS WORKSHOP & AFTER WORKSHOP

Masakazu Kurata

The University of Tokyo

HLReco Week, 07/06/2015-07/10/2015

LCFIPLUS IMPROVEMENT


- Now, focusing on:
 - Vertex finding efficiency improvement itself
 - Flavor separation in the case of 0vtx jet
 - Vertex Mass Recovery using pi0s
- Other topics especially using PID:
 - Soft lepton tagger for flavor tag using PID
 - Muon ID during jet clustering
- We will incorporate above topics into LCFIPlus
 - Short term task
 - Middle term task

WHICH CAN BE ACHIEVED DURING THIS WORKSHOP?

- Soft lepton tagger using PID
 - Can be easily include into LCFIPlus
 - Will be during this workshop
 - Directly check PID output and apply the lepton selection
 SIMPLE: PDG==11 for electron, PDG==13 for muon
 - Need to check performance
- AVF algorithm
 - Only AVF part, we will include during this workshop
 - Create flag to switch AVF/nominal chi2 algorithm
 - But AVF case needs BNess tagger for fake rejection…

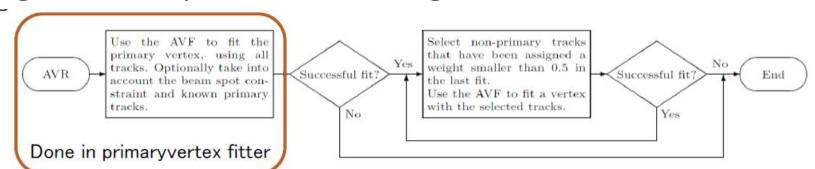
BNess tagger & vertex mass - middle plan?

- Slightly complicated
- Need to check this ROC curve improvement
 MVA_BDTG_flavortagger_0vtx_blseparation
 - Did I use really correct variable?
 - Please give me some time to check

- Need CNess? → I have already constructed CNess(just constructed)
- My feeling is this can be achieved after workshop
- Vertex mass recovery:
 - Need pi0 reco! →Graham's pi0 reco. techinque? or continue to use my pi0 reco.?
 - Need to check performance with Graham's reco. & AVF
 →retrain pi0vertexfinder is necessary
 - Xit takes some time!

IN SHORT ··· (MY OPINION)

- We will be able to obtain during this workshop:
 - Soft lepton tagger
 - AVF code include
- After workshop:
 - BNess tagger(& CNess tagger?) after some check
- Near future
 - Vertex mass recovery
- Finally, final flavor tagger
- Good improvement about flavor tagging will be after above them


BACK UPS

ADAPTIVE VERTEX FITTING

- To introduce the effect of multi-vertex fitting
 - Introduce weight function to estimate which vertex a track belongs to
 - Weight function definition: k-th track's weight on n-th vertex

$$w_{nk} = \frac{e^{-\chi_{nk}^2/2T}}{e^{-\chi_{\text{cut}}^2/2T} + \sum_{i=1}^N e^{-\chi_{ik}^2/2T}}$$

- Parameter: temperature T
 - If T small, decision is like χ 2 minimization
 - If T large, multi-vertex effect becomes large(suppress the weight function)
- Apply it to associate IP tracks to secondary vertices:
- Algorithm: Adaptive Vertex Fitting

- Tracks will belong to the vertices when w_{nk}>0.5(k-th track belongs to n-th vertex)
 - Try to fit more tracks than nominal algorithm

VERTEX FINDING OF BJETS

- o Common parameters are set at same values for comparison
- Same event sample(qqHH sample@500GeV) 19889 events
- 6 jet clustering, jet matching with MCtruth is performed
- Num. of jets

method	bjet with 2vtx	bjet with 1+1vtx	bjet with 1vtx	total
Nominal Algorithm	10577	9159	12804	32504
AVF&BNess	13461	6502	14256	34219

- Jets with vtx: 5% increased
 - Jets with 2vtx: ~24% increased →move from 1+1
 - Jets with 1vtx: ~11% increased
- Fake track rate per vtx: how many are fake tracks contaminated to vertices?
 - Seems fake singletrk is increased→need opt. and more selection

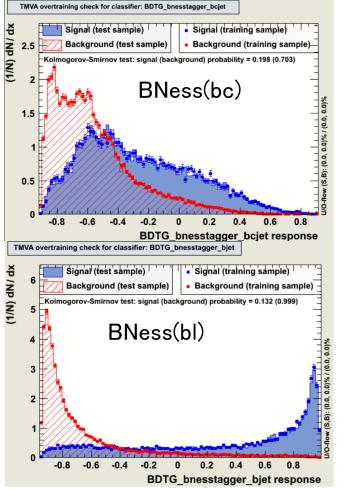
method	bjet with 2vtx	bjet with 1+1vtx	bjet with 1vtx	
Nominal Algorithm	0.011 ± 0.0007	0.007 ± 0.0006	0.025 ± 0.001	
AVF&BNess	0.010 ± 0.0006	0.011 ± 0.0009	0.021 ± 0.001	

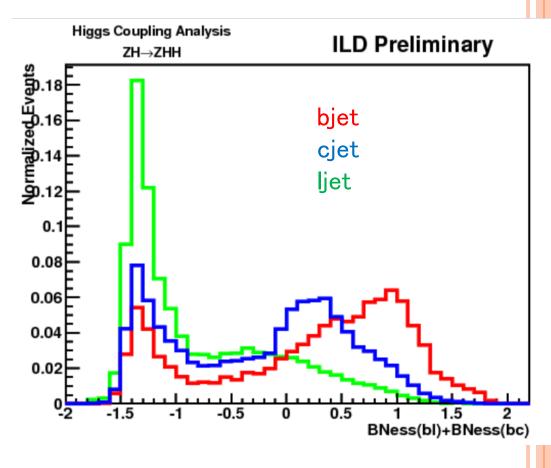
VERTEX FINDING OF C JETS

- o Common parameters are set at same values for comparison
- Same event sample(nnH sample@500GeV) 99432 events
 - H→cc: 6461 events
- o 2 jet clustering, jet matching with MCtruth is performed
- Num. of vertices

method	cjet with 2vtx	cjet with 1+1vtx	cjet with 1vtx	total
Nominal Algorithm	43	165	6537	6745
AVF&BNess	84	215	6960	7259

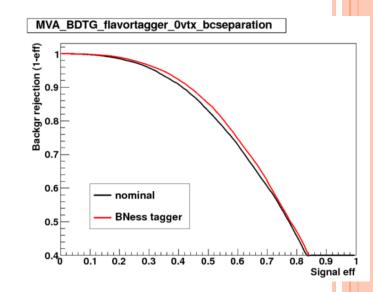
- Total: \sim 7% increased
- Vertex mis-ID eff. is increased(but, 2vtx jet has pure vertices)
 - Though num. of vertices is small
 - →need additional selection for singletrk? (e.g.)vertex mass?)
- Fake track rate per vtx:

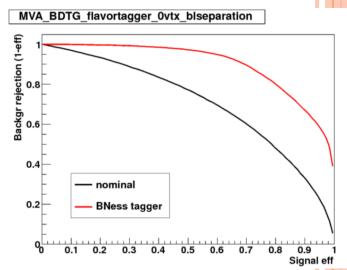

method	cjet with 2vtx	cjet with 1+1vtx	cjet with 1vtx	
Nominal Algorithm	0.00 ± 0.00	0.012 ± 0.006	0.0014 ± 0.004	
AVF&BNess	0.00 ± 0.00	0.018 ± 0.007	0.0013 ± 0.004	


BNESS TAGGER

- Flavor separation of 0vtx jet is most difficult situation
 - Only impact parameter implies the existence of secondary vertices for flavor separation
- BNess tagger will be worth trying in this case!
 - Developed in CDF
 - Focus on individual tracks and evaluate jet flavor only using single track
 - Track's potential for coming from heavy flavor particle(D&B meson and baryons) should be evaluated(using MVA)
- Difficulty in ILC
 - In CDF, it is important to separate b and other flavor → c quark separation is not required
 - In ILC, separation among b, c and other is very important → bc separation
 is a key for flavor tagger
- How is bc separation using BNess tagger?

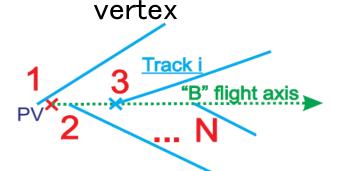
BNESS OUTPUT

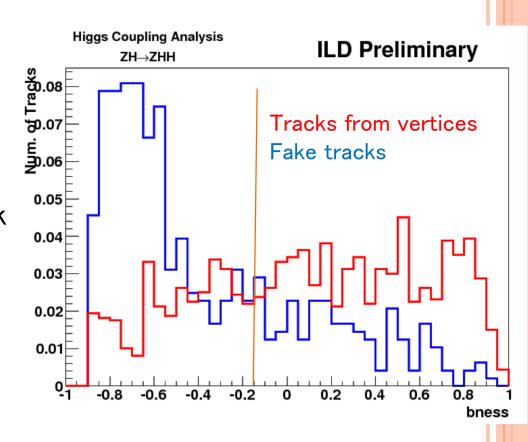

- Collect Highest score BNess track in 0vtx jets
- Final BNess is defined as BNess(bl)+ BNess(bc)
- Well separated between bjets and I jets
- Difference can be seen between bjets and cjets



RESULTS OF BNESS TAGGER ON FLAVOR TAGGING

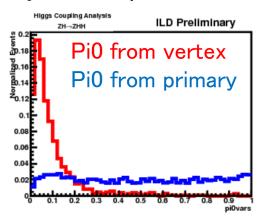
- Construct a "toy" flavor tagger
 - Convert nominal input variables to BNesstagger variables
 - Compare with ROC curve
- For bc separation, some improvement can be obtained
- For bl sepraration, becomes too good?
 under investigation
- b-l separation will be very good!
- Need optimization
- Especially, precise study of b-c-l flavor separation is necessary

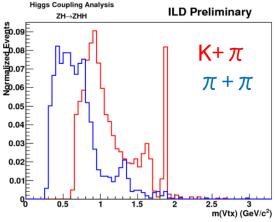


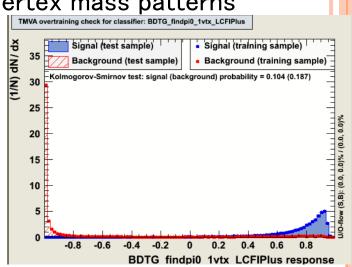


BNESS TAGGER FOR FAKE TRACK REJECTION

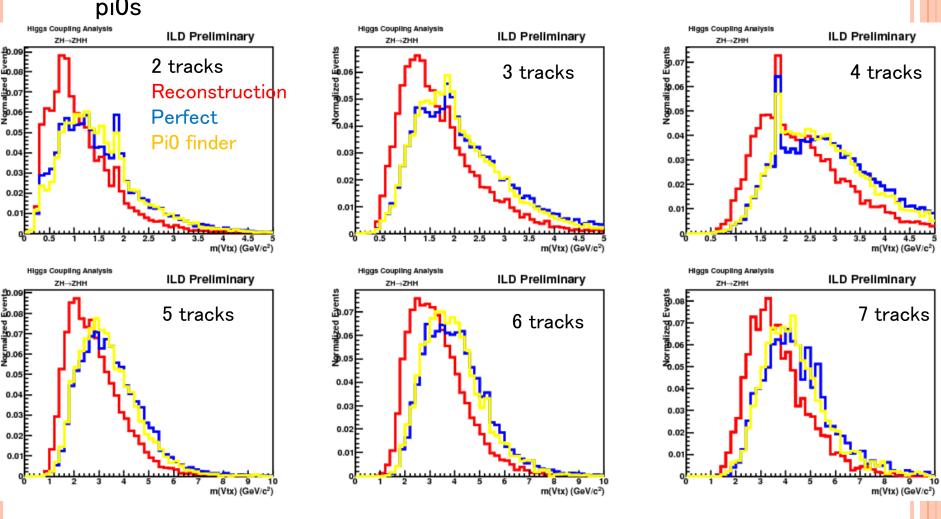
- Loosen the track selection to try to attach as many tracks as possible to vertices
 - Fake track rate will be increased
- To reject fakes, BNess tagger is used
 - So far, just use BNess(bl)
- So far, only BNess is checked
- →some bias for D meson tracks?


Example: looking for single track




VERTEX MASS RECOVERY

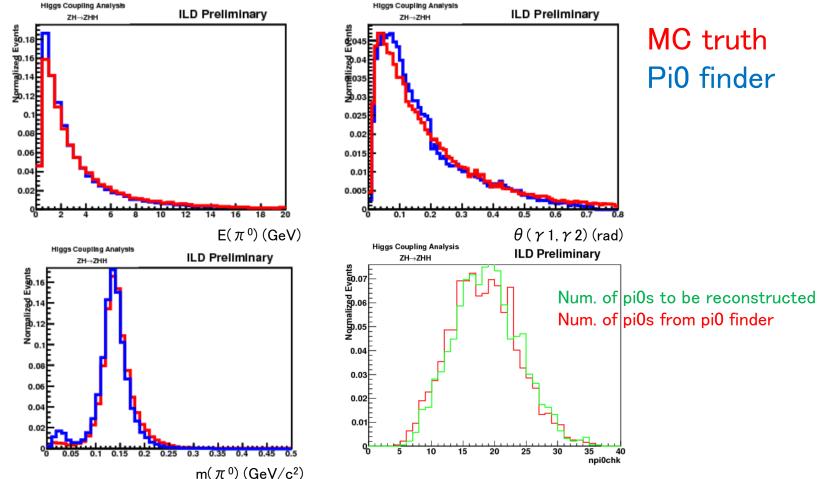
- Using pi0s which escape from vertices
 - Need to choose good pi0 candidates -construct pi0 vertex finder
 - Key issue -pi0 kinematics, very collinear to vertex direction



- Particle ID is the other key to classify vertices
 - Different particle patterns have different vertex mass patterns
- Construct Pi0 Vertex finder using MVA
 - Identify which vertex pi0s are coming from

VTX MASSES OF BJETS IN DOUBLE-HIGGS PROCESS

- Vtx mass distributions for each vertex pattern(ntrk)
 - These results are the outputs of LCFIPlus(unofficial ver.)!
 - Difference is limited by mis-pairing of gammas and mis-attachment of pi0s

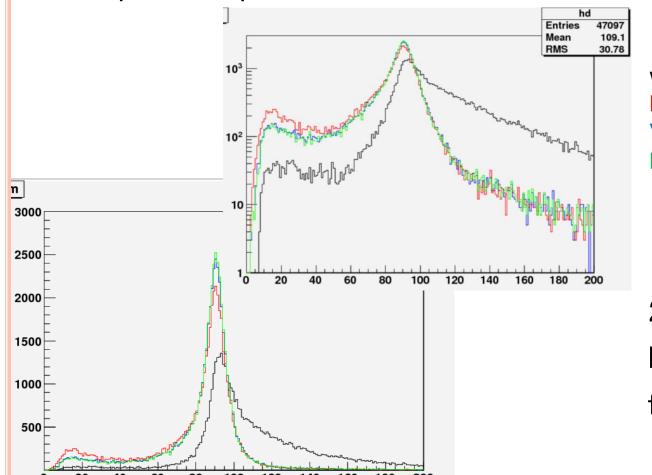


PiO reco using Naïve Bayes for vertex mass recovery

Good pairing eff. & mis-pairing eff.

	Correct pair	Wrong pair	
eff. (%)	46.0 ± 0.3	54.0 ± 0.4	

Kin. plots of pi0 reco. results



16

• Integrate pi0 reconstruction?

JET CLUSTERING WITH BEAM BACKGROUND REJECTION

- Now in LCFIPlus, Valencia jet clustering is available!
- We also include Durham jet clustering with beam b.g. rejection
 - Assumed very large energy jet exists in beam direction
- Compare the performance between Durham, Kt and Valencia

w/o beam b.g. rejection

Kt

Valencia

Durham

νν Z@500GeV
2 jet clustering
Parameters are tuned
for better result

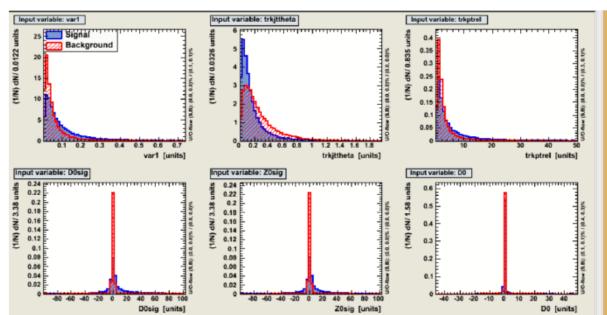
OTHER TOPICS

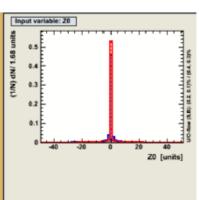
- Other change from DBD LCFIPlus:
 - Automatic creation of Joint Probability plots
 - We can calibrate for that variable
 - Performance check for new joint probability is ongoing

Paper available:

- arxiv: 1506:08371
- NIM paper has been submitted

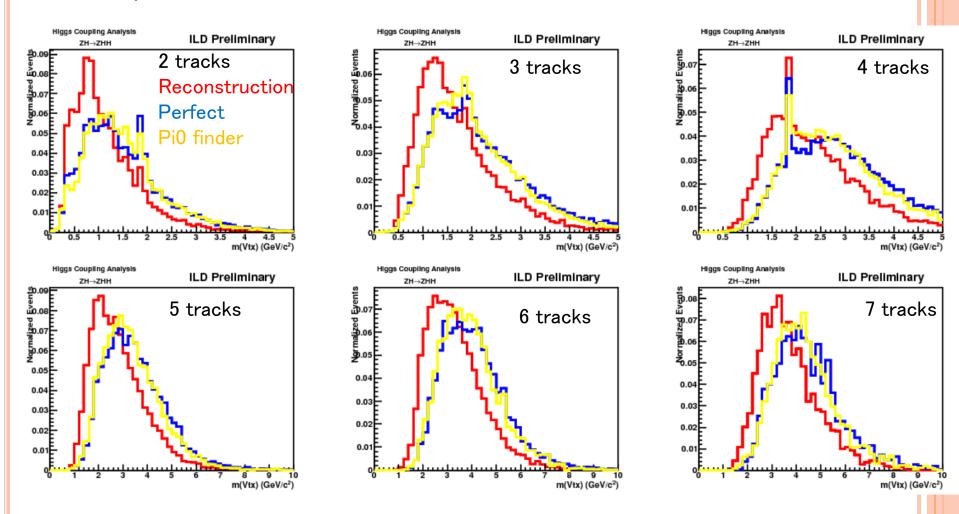
SUMMARY AND PROSPECTS


- For flavor tagging improvement:
 - New vertexing algorithm(AVF) will provide better vertex finding efficiency
 - BNesstagger will give some improvement for 0vtx jet flavor separation
 - There seems hope for attaching pi0s to vertices to recover vertex mass
- \circ So far, AVF will provide 4-7% improvement of vertex finding in bjets
 - Need to check the bias of fake track rejection using BNesstagger
 - Vertex quality check is necessary
 - This study will lead to vertex charge assignment improvement
- Ovtx jet case will improve well not only b-c separation, but also b-l separation
 - More Precise study of b-c-l separation is necessary
- Vertex mass recovery is reasonable
 - Will provide better flavor tagger
 - Of course, many checks are necessary
- Finally, incorporate all the ideas and check the final flavor tagging effs.in LCFIPlus!


BACK UPS2

TRACK MVA(BNESS)

- - Signal: tracks which come from B mesons or B baryons
 - Background: tracks produced in hadronization process
- Most significant tracks with both plus and minus signed impact parameters in a jet are collected


• Significance: $sig = \sqrt{(\frac{d_0}{\sigma})^2 + (\frac{z_0}{\sigma})^2}$

VTX MASSES

- Vtx mass distributions for each vertex pattern(ntrk)
 - not so bad
 - Difference is coming from mis-pairing of gammas and mis-attachment of pi0s

