High-Level Reconstruction: Overview and Workshop Goals

Jenny List DESY 6.7.2015

HLRecoWS 2015 6-10 July 2015, Hamburg, Germany

High-Level Reconstruction, 6-10 July 2015

Outline

- Introduction: Why care now?
- DBD Status: What has been achieved?
- Beyond the DBD: What next?
- Example: Si Tracking
- Conclusions

Introduction

Why do we care now?

We have

- written CDRs, DBDs, Physics TDR & many individual publications
- using full, Geant4-based detector simulation and reconstruction
- backed-up by test beam performance
- ⇒ studied our detector concepts and their physics performance in more detail than ever before for a project at a comparable stage of its life-cycle!

Unprecendented Precision

Precision physics program requires LC detectors to be

- 2-10 x more precise than previous collider detectors
- highly granular to deal with
 6, 8 and more jets in final state
- \Rightarrow Particle Flow Concept!
 - design of LC detectors optimised for PFlow performance

 detector design & final physics performance intimately intertwined with reconstruction:

Since the DBD

- a lot of important software developments
- but no update of the standard recontruction
- all developments w.r.t. DBD StdReco
- non-trivial interplay
- our goal this week:
- a major update of the standard reconstruction
- make the developments available for all analyses and optimisation studies

DBD Reconstruction (ILD)

DBD Reconstruction - Overview

<marlin>

. . . .

<execute>

<!-- ======== overlay gamma gamma background === --> <processor name="BgOverlay" />

<!-- ======== track digitization and tracking === -->

<!-- ========= the post tracking patrec ========= → <processor name="MyV0Finder"/> <processor name="MyKinkFinder"/>

yy->hadron overlay

TPC, Si, Fwd tracking, combined track fit in FullLDCTracking

V0 & Kink finding: input to Pandora

DBD Reconstruction - Overview

<!-- ===== calorimeter digitization and PFA ======= -->

<processor name="MyMarlinPandora"/> <processor name="MyBCalReco"/>

<processor name="MyLCIOOutputProcessor"/> <processor name="DSTOutput"/> </execute> PFO creation: PandoraPFANew BeamCal (pair bkg)

NO PARTICLE ID

Link PFOs with MCTruth

VertexFinder from LCFIPIus

REC & DST output

DBD Performance – Tracking

- tracking efficiency on tt->6jets with pair background overlaid: highly efficient for p_t > 1 GeV
- momentum and impact parameter resolution: meets or outperforms goals

Caveats:

- fake rate?
- prompt tracks
- p_t > 1 GeV

DBD Performance – PFlow & FlavourTag

L Purity

0.6

0.4

0.2

0

- Jet energy resolution:
 - measured as rms₉₀(E_{vis} / 2) on dijet event without BS/ISR
- excellent b/c/light jet separation over a large range of energies

important for top physics:

- JER in 6jet events?
 => jet finding!
- b-jet energy?
- A_{FB}: vertex charge?

Since the DBD

Re-optimising the detectors

[F.Simon, ILD meeting Oshu City]

Are we looking at the right places?

Is there a "cliff" in a dimension we haven't been checking yet?

DBD reco did not consider:

- low momentum particles?
- particle ID?
- lepton ID in jets?
- reco of exclusive b/c decays?
- vertex charge?
- pi0 reconstruction?
- tau reconstruction?
-

And don't forget about systematic uncertainties!

Systematic uncertainties

- many studies quote statistical uncertainties only
- in particular, the "benchmarks", both for LoIs and DBDs
- useful rule of thumb based on LEP experience: ~1%-level is readily achievable at e⁺e⁻ collider

but we claim better precision in many places:

High-Level Reconstruction

Particle ID

- photon reco
- pi0 reco
- tau reco
- dE/dx
- cluster shape
- isolated leptons
- V0s
- FlavourTag
 - life time
 - leptons in jets
 - vertex charge
 - vertex mass
- MarlinKinfit
 - b jet treatment
 - vertex fitting

A lot has happened since the DBD – but mostly in the context of individual analyses!

- JetFinding
 - Marcel's JetFinder
 - vertex-based jetfinding
 - ColorSingletJetFinder?
- BeamCalReco

•

- new parametrisation?
- **PFO uncertainties**
 - p covariance matrix
 - jet by jet energy uncertainty
- Truth information
 - RecoMCTruthLink
 - TruthVertexFinder
 - TruthColorSingletFinder
- MatrixElements
 - interface Helas / Omega

Interplay in High-Level Reconstruction

Towards a new reconstruction

DBD Reconstruction - Overview

DBD Reconstruction - Overview

High-Level Reconstruction, 6-10 July 2015

Post-DST

Should / can any of these be included in standard reconstruction?

- isolated lepton finding
- pi0 finding/ fitting
- tau finding
- flavour tag
- jet finding
- kinematic fitting
- matrix elements

Conclusions

Conclusions

- LC detectors have been designed and benchmarked to an unprecedented level
- Lol, DBD studies demonstrated the basic capabilities of particle flow detectors

- now, it is time to exploit *all* the details our highly granular and performaning detectors offer
- expect significant impact on physics performance and on detector (re-)optimisation
- this serious work, but let's start the effort!

Backup

High-Level Reconstruction, 6-10 July 2015

Silicon Tracking

Silicon Tracking in ILD

Layer 6

60

125

- forward silicon (FTD):
 - stand-alone tracking (R. Glatthauer, http://www.hephy.at/fileadmin/user_ upload/Publikationen/DiplomaThesis.pdf)
- central silicon:
 - based on TPC pat rec
 - pick-up of SIT / VTX hits
- \Rightarrow limited at lower p_t by TPC acceptance!
- std-alone track reconstruction in VTX?
 - problem: pair background!
 - up to 5-10 hits / cm^2 / BX
 - ILD baseline VTX integrates
 over 30-300 BX

0.9

4

ETD

HCAL

HCAL

TPC

SET

100

Yorgos Voutsinas

Mini-Vector Cellular Automaton Tracking

- exploit double-layer structure of VTX
 - for real track, hits in both parts of double layer should be close by and point in same direction
- applied in various CMOS VXD configurations
 - Mini vector formation
 - Hits in adjacent layers (dist 2mm) with max distance 5mm
 - Or δθ between hits in adjacent layers (cut can go up to 0.1⁰)
 - Divide VXD into θ , ϕ sectors
 - Try to connect mini–vectors in neighbouring sectors using a cellular automaton algorithm

Performance of new VXD tracking tools

Performance of new VXD tracking tools

