
π⁰ Reconstruction Tool Development

ILD High-Level Reco Workshop Graham W. Wilson University of Kansas July 6th 2015

See talk at KEK meeting for more details

 $30 \text{ GeV} \pi^0$

Physics Motivation

- High Energy π^0 (2-photons hard to separate)
 - For example, high energy tau reconstruction for CP violation via spin correlations in H $\rightarrow \tau \tau$ decays
 - Emphasizes separation of π , ρ , a_1 decays and the correct measurement of the electromagnetic energy.
- Ubiquitous π^0 's.
 - Median π^0 energy in jets is 2 GeV photons are usually well separated and measured independently. The average jet has 25% of the jet energy in 9 π^0 s. So important part of the jet energy resolution.
 - Photon energies can be very low energy.
 - Can use π^0 mass constraint to improve jet energy resolution on an event-byevent basis IF photons can be efficiently reconstructed and correctly paired up.
 - See arXiV:1203.2577.
 - Very important for H and W mass measurement and the overall JER based detector optimization.

My focus today is on "ubiquitous π^0 s"

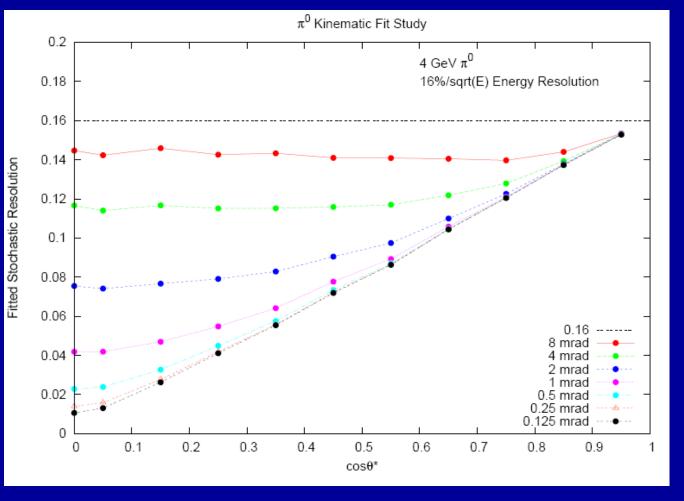
Example Mass-Constrained Fit

4 GeV π^0 , 16%/ \sqrt{E} , 0.5mrad

Variable	Measured	3-variable fit	6-variable fit	Pull
<i>E</i> ₁	2.468 ± 0.253	2.385 ± 0.192	2.385 ± 0.192	-0.504
E_2	1.679 ± 0.196	1.605 ± 0.130	1.605 ± 0.130	-0.504
$2(1-\cos\psi_{12})$	$(4.765\pm0.0985)\times10^{-3}$	$(4.759 \pm 0.0977) \times 10^{-3}$		-0.504
$\theta_1 \text{ (mrad)}$	1608.36 ± 0.50		1608.37 ± 0.50	0.504
$\theta_2 \text{ (mrad)}$	1619.11 ± 0.50		1619.10 ± 0.50	-0.504
ϕ_1 (mrad)	2196.86 ± 0.50		2196.84 ± 0.50	-0.504
ϕ_2 (mrad)	2128.60 ± 0.50		2128.62 ± 0.50	0.504
m_{π^0} (MeV)	140.5			
$\rho_{E_1E_2}$		-0.9683	-0.9683	
E_{π^0}	4.147 ± 0.320	3.990 ± 0.074	3.990 ± 0.074	
χ^2/v		0.2543/1		
p _{fit} (%)		61.4		

(Note: the 3 and 6-variable fits are equivalent in terms of energy variables)

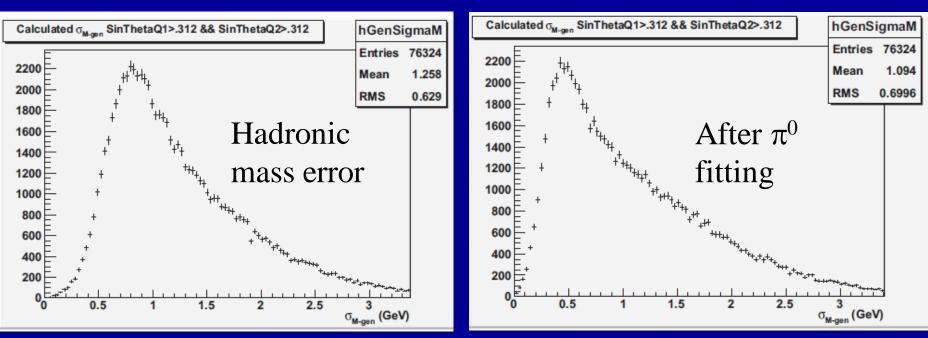
Fitted π⁰ Energy Resolution


Use rms of fitted π^0 energy distribution.

4 GeV π^0

 π^0 s are generated at fixed $\cos\theta^*$ values

Later slides assume 0.25mrad.


See backup slide for exact angular resolution definition

Event-Specific Hadronic Mass Resolution

$e^+e^- \rightarrow u \bar{d} e^- \bar{\nu}_e$

B. van Doren

Assumes individual particles are reconstructed, resolved and measured with perfect efficiency, intrinsic detector resolutions and perfect mass assignments.

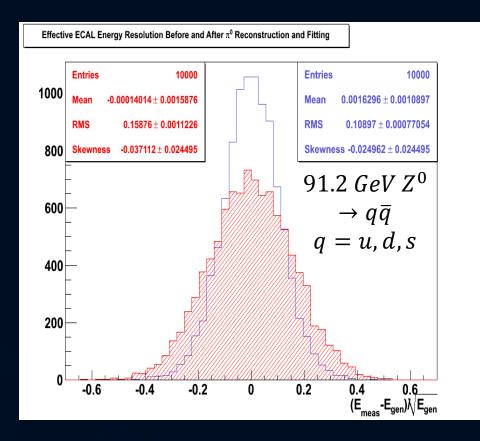
(Also **no confusion**: valid for low jet-energy and jet multiplicity environment)

Many experimental systematics need to be included: including effects like multiple interactions $(\gamma\gamma \rightarrow hadrons)$

 $\sqrt{s=500 \text{ GeV}}$

Motivation

95% of photons are created as pi-zero decay products

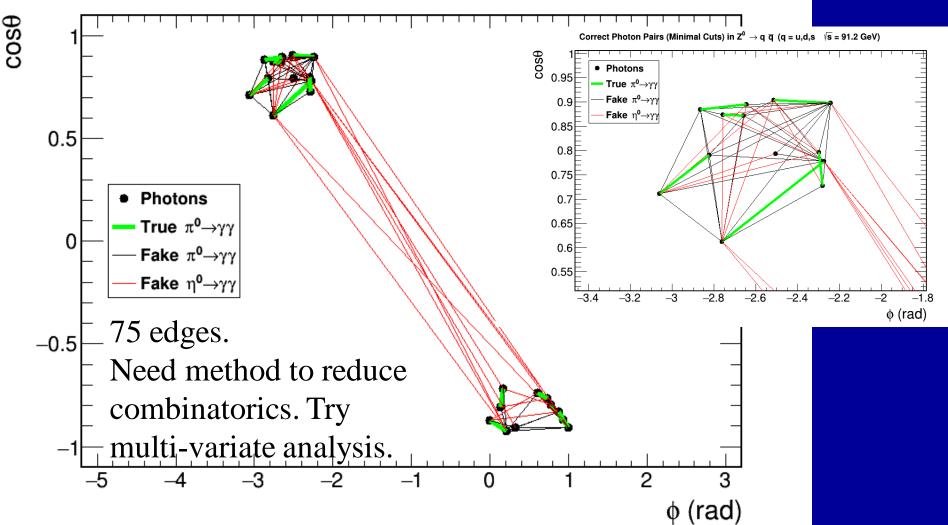

4% of photons are from etas

<u>IF</u> pi-zeroes and etas can be reconstructed one can perform mass constrained fits to improve the measurement resolution of the photons in hadronic jets

Example improvement when ALL pi-zeroes in 91.2 GeV $Z^0 \rightarrow q\bar{q}$ (q = u, d, s) are reconstructed and mass constrained fits are performed.

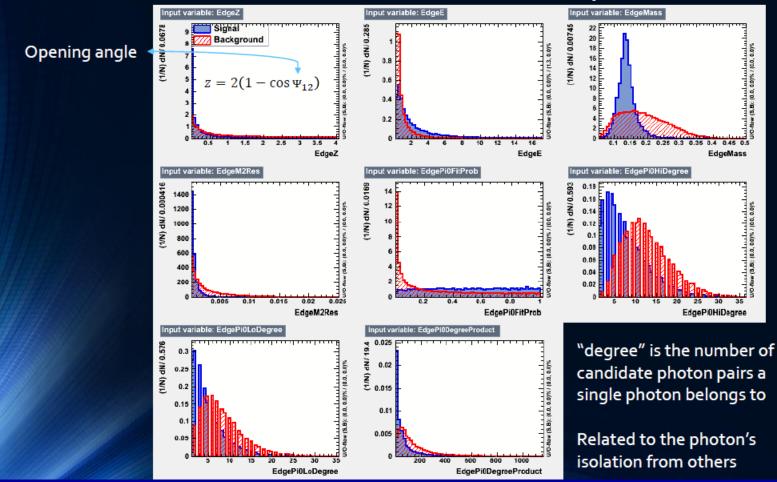
When photon response is modeled in a toy Monte-Carlo environment as $\sigma_E = 0.16\sqrt{E}$ with angular resolution of 0.25 mrad, average event by event resolution of photon portion becomes $0.109\sqrt{E}$

B. van Doren

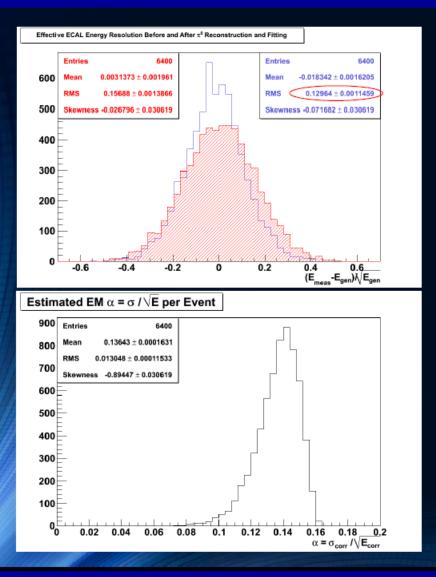

Photons account for on average 24.8 GeV of the total 91.2 GeV in the events

Assumes 100% photon reconstruction efficiency above 50 MeV and p_{fit} >0.1%

Event 4 (typical)


Graph vertices are photons. Graph "edges" are consistent (p_{fit} >0.1%) with pairing of the two photons to a π^0 or η^0

Correct Photon Pairs (Minimal Cuts) in $Z^0 \rightarrow q \ \overline{q}$ (q = u,d,s \sqrt{s} = 91.2 GeV)


Update from Brian

Multivariate Classification – Input Features

33

Update from Brian

Summary

- Next generation particle detectors enable more sophisticated analysis due to the isolation and identification of individual particles
- Can achieve improvement to ECAL performance by identifying and performing mass constrained fits for pi-zeroes
- Improved estimates of pi-zero energy resolution can be achieved using modified regression trees
- Identification of pi-zeroes can be achieved with multivariate classifiers (provided by TMVA)
- Further improvements are likely possible in classification and energy bias correction

Getting More Realistic / Doing Even Better

- Photon efficiency especially at low energy is likely critical
 - For "solving" the problem not so much for improving the resolution (asymmetric decays don't help so much)
 - Difficult in a sampling calorimeter...
- Photon conversions
 - Opportunity to confer tracking resolution on the nonconverted partner photon
 - Could consider increasing the conversion probability??
 - while not harming too much the tracking (mini pair-spectrometer before the ECAL ?).
- Dalitz decays $(\pi^0 \rightarrow \gamma e^+e^-)$
- Non-prompt π^0 from K⁰_S and Lambdas.
- An ECAL such as one with MAPS sensors would be well suited to achieving the ultimate ψ_{12} resolution.

Plan

PLEASE of Response Model - Histogram or Decision Tree (E, O, Q) or Smooth Model DON'T DO Mass Constrained Fit - Bias and Error Correction ERASE. H" Matching - MVA Classifiers? [Merged Staticher] VVV Condidates) SE = & FE + BE ... LCIO Integration Yet-UIDS (PFOIDLitzolhord) KS->TT TI ->48 Candidate Subset XX Cundidates W Cound dat TT & delts? Pandora TT-WY. MEhren Markin PipFit 7'->8 ch/Y/n/m/Ki (E, 159, 2, 7, V.V.V) p Reconstructed Particle Eda V Candidates X-Jete

Concrete Plan

- Develop 3 Marlin Processors
 - GammaGammaResonanceCandidateFinder
 - Input: Photons + Cov Matrix
 - Output: ReconstructedParticles Collection with UIDs for Photons
 - May need room for extra info in RP.
 - GammaSolutionFinder
 - Input from above
 - Output: matching solution
 - Algorithm likely not full TMVA at this stage

GammaFittingPerformanceEvaluator
Brian has the elements of these in a stand-alone "IPR" library.

General Software Questions/Issues

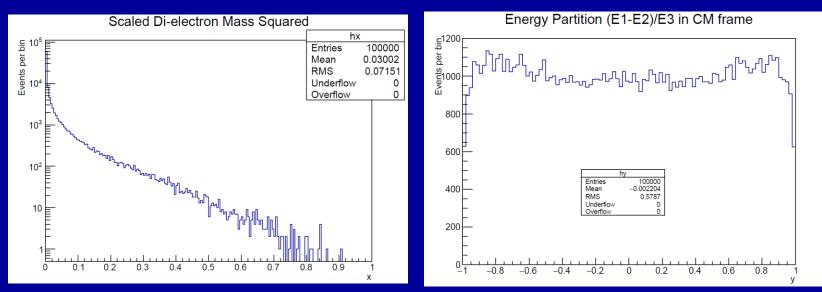
- Availability of covariance matrix for input to Pi0Fitter. (ReconstructedParticle Photons or Calorimeter Clusters or Conversions ..)
- Need Unique ID of photons in RP π^0 s
 - So that multiple graph solutions can be explored and the $\gamma\gamma$ candidate reconstruction/fitting can be separated from the matching problem.
- What is the plan for V0s?
 - Suspect current algorithms not very efficient
- What is the policy on multiple hypotheses?
- Would like to integrate external library
 - LEMON graph library

R&D – things I'm keen on working on too

- Eventual highly performant implementation depends also on
 - High efficiency photon reco especially at low energy (GARLIC, Pandora,)
 - Best possible photon shower position resolution
 - See my talk on photon shower fitting from LCWS11
 - Shower position based π^0 fit. (x,y,z,E, v)
 - Reconstruction of photon conversions (V0's)
 - Reconstruction of Dalitz decays ($\pi^0 \rightarrow e^+ e^- \gamma$)
 - Essentially special case of conversions.
 - PFO Uncertainties

PFO Uncertainties / Interpretation

- "Neutral Hadrons"
 - Actually charged particle satellite
 =>IGNORE
 - Actually a photon use EM calibration
 - K0_L
 - Neutron
 - Anti-neutron

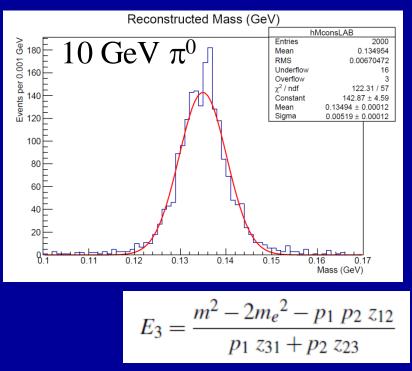

- "Photons"
- - ditto ... though likely less important
- How much does
 Pandora split energy contributions ?

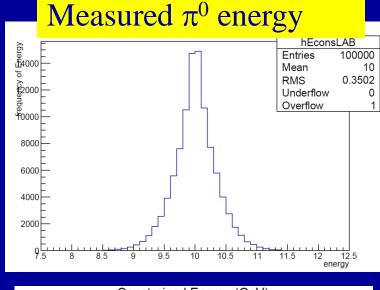
My feeling is that one way of measuring the confusion is to use resimulation of individual events (See talk from Geneva meeting (2011?))

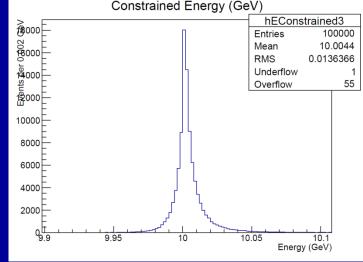
Dalitz Decays $(\pi^0 \rightarrow e^+ e^- \gamma)$

Prototype for $\gamma \gamma_C$ performance

With new student, Justin Anguiano


 $x = [M(ee) / M(\pi 0)]^2$


Dalitz Decays $\pi^0 \rightarrow e^+ e^- \gamma$ Contd.


$z_{ij} = 2(1 - \cos \psi_{ij})$

$$2m_e^2 + p_1 p_2 z_{12} + p_2 E_3 z_{23} + E_3 p_1 z_{31} = m^2$$

First step: assume ILD p and EM resolution. Angles measured perfectly .. no bremsstrahlung ...

Expect photon angle resolution is important

Summary

• Lots to do – but much of it is fun.

PLEASE - Response Model - Histogram or Decision Tree (E, O, Q) or Smooth Model DON'T ERASE H Matching - MVA Classifiers? [Mergedisticated] VVV Condidates KonTTTI-348 Cundidate V Cound do · Martin PipFit 71-398 (L, 159, 2, 2, V, V, V) Non-prompt photon finder