

Tau Reconstruction

Taikan Suehara (Kyushu University, Japan) Works done by M. Berggren, D. Jeans, S. Kawada, T. H. Tran

Characteristics of tau in LC

Tau in LC

- Usually highly boosted
 - Weakly boosted in low-energy τ s for BSM study
- Very confined bunch of particles
 - Separation of decay modes is challenge
 - $e/\mu/\pi$ separation is also critical
 - Extracting kinematics on 'tau-rest frame' – precise direction measurement is needed
- Various decay
 - Intensive efforts needed for analysis

Taikan Suehara, High level recons

Final state	Branching fraction
$e^- \bar{\nu}_e \nu_\tau$	$17.85 \pm 0.05\%$
$\mu^- \bar{\nu}_\mu \nu_\tau$	$17.36 \pm 0.05\%$
$\pi^- \nu_{\tau}$	$10.91 \pm 0.07\%$
$\rho^- \nu_\tau \ (\rho^- \to \pi^- \pi^0)$	$25.52 \pm 0.10\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^0 \pi^0)$	$9.27 \pm 0.12\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^+ \pi^-)$	$8.99 \pm 0.06\%$
24 other modes	10.10%

age <u>2</u>

Tau: physics target for ILD

- Higgs $\rightarrow \tau \tau$
 - Branching ratio
 - CP violation (by impact param and angular info)
 - Many decay modes should be studied: lot of effort
- Precise measurement of ff production
 Including tau polarization measurement
- BSM stau? (low energy)
- Treatment of tau as background
 'Tau tagger' is essential
- etc.

Tau: works

- High energy photon/ π^0 reconstruction – Photon counting is sometimes essential
- Isolated taus: tau finder (like leptons)
 Tau consists of multiple particles
 - Clustering and isolation criteria essential
- Taus in jets: much more difficult

 For jet clustering, flavor tagging etc.
- Decay analysis for polarization etc.
 - Vertex/impact parameter ($c\tau$ = 77 µm)
 - Kinematic fitting

Taus: final reconstruction flow

- 1. PFA
 - High energy photon reconstruction
- 2. Lepton ID
 - Electron & muon separation
- 3. pi0 reconstruction (?)
- 4. Tau finder
- 5. Vertexing (3-prong tau)
- 6. Decay reconstruction
- 7. (Jet tau ID)

PFA: Garlic

PFA of tau is different from that of jets

- High-energy low-multiplicity (but concentrated) particles
- Photon counting ($\rightarrow \pi^0$) is as important as energy resolution
- Garlic is better than Pandora

→ how to combine if we also need to reconstruct jets? (eg. $qqH \rightarrow qq\tau\tau$)

Lepton ID

 Masakazu working on lepton ID including shower profile and dE/dx

- Dedicated tuning for leptons in tau may be needed
 - Off-primary vertex
 - charged pi + photons (from pi0) should not be identified as leptons
- Interface to lepton ID in tau finder needed

pi0 reconstruction

Graham is working on??
 – but maybe for jets

May improve tau finder performance

More important in decay reconstruction

Tau finder

1. Tau finder without jets – easier

- 2. Tau finder with jets more important
 - Tau finder in qqH \rightarrow qq tautau study (by TS)
 - Not included in MarlinReco → can be published
 - Others?

3. Low energy taus

Tau finder

- Tau finder key algorithm to separate tau
 - Normal jet clustering is usually not good
- Dedicated Tau finders
 - TaJet finder (tuned for $qqH \rightarrow qq\tau\tau$)
 - DELPHI tau finder (for low energy tau)
 - Others?

Tajet finder (1)High-purity tau taggingin presence of jet background

- 1. Order charged tracks by largest energy
- 2. Select the first track
- 3. Combine neighboring particles -> "Tau Jet"

Slide from Dec. 2012 Now a bug fixed \rightarrow slightly better

- Combined mass < 2 GeV && $\cos\theta$ w.r.t. jet axis > 0.98
- 4. Tau selection (tuned for rejecting qq background)
 - 1. Tau Jet energy > 3 GeV
 - 2. Veto >=3 prong + neutrals (> 1 GeV)
 - 3. Cone energy ($E_{cone} < 0.1E_{taujet}$) with $cos\theta_{cone} = 0.9$

ZZ -> qqττ 250 GeV, 13600 taus	1-prong		3-prong wo/ neutral		3-prong w/ neutral	
	tau	non-tau	tau	non-tau	tau	non-tau
No cut	10326	43286	716	1616	777	4280
E _{taujet} > 3	8679	7145	708	1304	742	4244
E _{cone} < 0.5E _{taujet}	7170	1009	621	181	681	1813
E _{cone} < 0.2E _{taujet}	6455	446	567	64	616	1020
E _{cone} < 0.1E _{taujet}	6001	254	527	30	570	620

TaJet finder (2)

5. Jet charge recovery (for better efficiency)

- Tracks with energy < 2 GeV are detached one by one until tau jet has 1 or 3 tracks and sum charge is +1 or -1
- Jet is rejected if above condition cannot be satisfied after detaching all < 2 GeV tracks
- 6. Return to 2. (previous page) with the remaining tracks
 - Stop after all E > 2 GeV tracks have been processed

Tau flight direction

- should help with polarization measurement
 - 3 degrees of freedom of tau four-vector
 - 3 constraints:
 - 1. $E_{\tau} = \sqrt{s}/2$
 - 2. tau/hadron angle from two-body decay kinematics
 - 3. tau track must meet the hadron track at a point (1prong) or the vertex (3-prong)
 - can be solved for tau direction analytically

IP

a sneak preview of this concept will be shown for 1-prong events using first-order approximation for tracks (using line segment instead of helix)

Taikan Suehara, High level reconstruction workshop @ DESY, 6 Jul. 2015 page 13

tau

hadron

neu

Unmeasured quantities

2 x neutrino 3-momenta lost ISR photons

ZH $\rightarrow \mu\mu\tau\tau$ Full kinematic reconstruction by D. Jeans

Kinematic constraints

overall 4-momentum conservation 2 x tau decay kinematics ← more details next

tau-tau mass (if we assume H->tau tau) mu-mu mass not useful: resolution much better than Z width

<u>d</u> and <u>p</u> are perpendicular in x-y, but not in 3d define <u>d'</u> = <u>p</u> x (<u>d</u> x <u>p</u>) \leftarrow inside p-d plane, perpendicular to p

neutrino momentum <u>q</u> lies in plane of <u>d</u> and <u>p</u> so we can write: <u>q</u> = |q| (cosψ <u>p</u>* + sinψ <u>d'</u>*) where <u>x</u>* is a unit vector: <u>x</u> / |x|

We know that the invariant mass of (p + q) is m_{tau} so we can calculate the neutrino energy |q| for each value of ψ by requiring pt-balance in the event [sum px = sum py = 0] it is possible (but somewhat messy) to calculate the angles Ψ due to finite resolution of measured quantities, a real solution is not always possible
 More robust approach is to do a standard minimisation [i.e. not a constrained fit] to minimise the event pT

Minuit minimisation separately in each quadrant (no constraints needed) \rightarrow Four solutions

For now, define "best" solution as one with smallest value of pT + missing mass

If we have zero or one ISR photon, missing mass = 0

<u>Summary</u>

It's interesting to try to fully reconstruct taus: they can act as "polarimeters"

 \rightarrow can reconstruct their spin state by looking at their decay products

The ILC machine and detectors have great potential for tau reco: tiny beam spot high precision vertex detector

In hadronic tau decays of (tau tau + "X") processes we can calculate the tau neutrino momenta with good precision if we can measure pT of "X" If this is not possible, other approaches may be possible → make different assumptions about event

Kinematic fitting should give some improvements in precision take account of uncertainties in measured quantities tools are ~in hand

Tau in Jets

No real work now

- High-energy secondary pions (+ associated pi0s) can be identified as tau candidate
 - Need to check

Tau: possible works this week

- Establish standard tau finder
 - Parameters should be tuned on analysis
 - Integration with lepton finder
- Garlic + Pandora? (PFA task?)
- 'Tau decay reconstruction?'
 - Seems rather analysis task than tools
 - Maybe some helping tool is possible
 - Examination of tau 3-prong vertex
- Jet in tau? (not in this timescale?)

Tau and Detector Optimization

Radius

- Particle separation
- Isolation of tau from jets (also B field affects)
- Pixel size
 - Particle separation
 - Ultra-high granular pixels at first layers of ECAL may help (eg. MAPS)
- Photon energy resolution
 - meson $(\pi^0/\rho/a_1)$ reconstruction
- Impact parameter resolution
 For angular analysis of CP violation

D. Jeans

Analysis: $H \rightarrow \tau \tau$ S. Kawada

Analysis condition

- PandoraPFA (no Garlic)
- DBD geometry
- TaJet finder
- Collinear approx.
 (only on qqH, IIH)
- No reconstruction of tau decay products

Μττ @ qqH 250 GeV

$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	qqh	e ⁺ e ⁻ h	$\mu^+\mu^-h$	vvh	Combined
250 GeV, 250 fb ⁻¹	3.4%	14.4%	11.3%	32.4%	3.2%
500 GeV, 500 fb ⁻¹	4.6%	25.2%	17.8%	6.9%	3.7%

CMS 3 ab⁻¹: 2-5%

Analysis: Higgs CP

Identifying CP-even and CP-odd mixing of Higgs

- CP odd (H \rightarrow) ZZ couples only with loop
 - More difficult to see the non-SM Higgs mixing
- (H \rightarrow) $\tau\tau$ is directly coupled to CP-odd Higgs
- Complicated analysis to identify CP mixing
 - Clear separation of Higgs decay mode
 - Angular parameters differ by decay modes
 - Kinematics of tau-rest frame critical
 - cannot perfectly reconstruct kinematics of taus using impact parameters with momentum
 Takalesay products ve

Analysis: $e^+e^- \rightarrow \tau \tau$ H. Tran

Analysis condition

- 250 GeV CM energy
- Garlic v3.0.2 (no jets)
- Compare performance of various radius with constant aspect ratio

• SiECAL

number of reconstructed photons with MVA photon selection

Target: separation of 1-prong hardonic decay

$\pi^- \nu_{\tau}$	$10.91 \pm 0.07\%$
$\rho^- \nu_\tau \ (\rho^- \to \pi^- \pi^0)$	$25.52 \pm 0.10\%$
$a_1^- \nu_\tau \ (a_1^- \to \pi^- \pi^0 \pi^0)$	$9.27\pm0.12\%$

Taikan Sue

R_{FCAL}^(inner) = 1843 mm

R_{ECAL}^(inner) = 1450 mm

Analysis: $e^+e^- \rightarrow \tau \tau$ H. Tran

Analysis: $e^+e^- \rightarrow \tau \tau$ H. Tran

Final comments

- Detector challenge
 - Decay reconstruction for
 - Higgs CP (seems most important)
 - ff polarization niche market physics??
 - others?
 - Low energy stau
 - Low energy track/photon reconstruction
- Other perspectives for calorimeter optimization than quark jets
- Analysis and software is critical
 - Optimization is not easy same as quark jets