Particle Flow Tuning of Fast Simulation for ILC.

Eldwan Brianne, Mikael Berggren, Jenny List, Katja Krueger FLC Group Meeting 14.04.14, Hamburg

Outline

> ILC and ILD

- Description and requirements
- > A bit of physics : the amazing story of a hadron
 - Fragmentation and hadronization
- > Particle Flow Concept
 - Association errors
- Fast Simulation and SGV
 - Comparison SGV without confusion & full simulation
 - Particle Flow emulation in SGV
- > Remaining puzzle
 - Correlation in double counted and lost energy
 - First Ideas
- > Conclusion & Outlook

The International Linear Collider & Detectors

http://ilcild.org/

- Future e⁺e⁻ collider @ 500 GeV (upgrade up to 1 TeV)
- > Polarized beams : $P(e^+,e^-) = (0.3,-0.8)$
- > Length : about 31 km (50 km @ 1 TeV)
- Motivation : High precision measurements and BSM searches

- > Good vertexing, tracking resolution and high granular detectors
- > The International Linear Detector (ILD)
 - Designed for Particle Flow
 - Compact detector and B = 3.5T
 - ECAL segmentation : 5*5 mm²
 - HCAL tiles : $3*3 \text{ cm}^2$

Detector requirements

- > Detector performance requirements (high precision)
 - High momentum resolution : $\delta(1/p_T) \approx 5.10^{-5} \text{ GeV}^{-1}$

 \bigcirc Jet energy resolution : ~ 3-4 %

Needs a good understanding of the detector and the underlying physics

> Let's look at the process : $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets @ $\sqrt{s} = 500$ GeV

What is happening there ? How do we get from quarks to hadrons (what we actually detect in a calorimeter) ?

- > Fragmentation process
 - Quarks radiate gluons
 - Gluons can form a pair quark antiquark

- > This process continues until a certain energy scale → free quarks must then hadronize because of color confinement
- > They form jets composed of many hadrons

- > 2 models :
 - Cluster model
 - String model

from gluon field

Bottom quarks - B hadrons

Fragmentation function into pion, kaons and protons

Getting back the physics objects

- > How do we get back the physics objects : Higgs, W/Z bosons, top...?
 - Need to reconstruct jets : clustering algorithms, flavor tagging...
 - Unprecedented jet energy resolution => <u>Particle Flow needed</u>

Particle Flow Concept

- > Goal : Improve Jet energy resolution
- > Principle :
 - identify and measure every single particle in a jet by making use of the information provided by all detector components
 - the jet energy is the <u>sum of the contributions of</u> <u>each individual particle</u>
- > <u>To do so :</u>
 - Momentum measurement of charged particles in tracker
 - Energy of photons in ECAL
 - Energy of neutral hadrons in HCAL (only) 10% fraction of the jet energy

J. S. Marshall, M. A. Thomson arXiv:1308.4537v1

Association errors

- > Association errors :
 - Cluster merging
 - Cluster splitting
 - Cluster track mis-association
 - Other errors (charged to charged cluster, neutral to neutral cluster..) don't affect the total visible energy
- > Confusion errors :
 - If a charged cluster is partially split to a neutral cluster → energy is double counted
 - If a neutral cluster is (partially) associated to a track → energy is lost

 $\frac{1}{h^{*}}$ $\frac{1}{h^{*}}$

Charged cluster splitting

Neutral cluster merging and mis-association

IP

Fast Simulation

- > Full Simulation : Geant4 Mokka
 - Detector Optimization
 - Testbeam comparison
 - Drawback : O(mins)/events
- > Can't be used for :
 - Physics studies with huge MC needs
 - SUSY searches (parameters scan), mass production, evaluation of systematics (tt events, W+jets, Z+jets)
 - Physics performance to different parameters (nominal energy, beam energy spectrum...)
- > We need Fast simulation !!!
 - Simplified geometry
 - Validation with full sim & data

Fast simulation with particle flow detectors

- Fast simulation of a particle flow detector beyond 4vector smeering :
 - Completely new approach and challenge
 - Never done before
 - Combining accuracy and speed for the needs of ILC
- > Tool of choice :

SGV (Simulation a Grande Vitesse)

> Advantages :

- Much faster than full simulation (~10³ faster)
- Detector configuration can be changed easily
- Good agreement with full simulation

> Tracking :

- Co-variance machine (inverse Kalman filter)
- Helix calculated by co-variance matrix at each layers, every parameters from first principles.
- Track resolution from detector geometry and point resolution → allows more flexibility
- > What about Calorimeters ?

M. Berggren, arXiv:1203.0217v1

Tracking in SGV

Comparison SGV w/o confusion / full simulation

- > Process : $e^+e^- \rightarrow W^+W^- \rightarrow 4$ jets
- > Total Energy : peak too narrow
- Neutral and Charged energy : resolution in agreement but shift in energy!
- > Need particle flow emulation!

Particle Flow in SGV

> Algorithm :

- First, clusters are made from simulated showers (calculated by a function) of each particle
- Determine parameters like type, distance & energy of the closest neighbor
- Simulate confusion by calculating a probability of splitting or merging a cluster depending on the isolation, the energy of the cluster and the type (EM or hadronic)
- Same output as full simulation in order to compare !
- > What has been achieved :
 - Tuning of SGV to PandoraPFA by parametrizing the association errors → depending on energy, isolation of the cluster, type of the particle, detector region and if it is EM or hadronic showers (in total 28 parameters)

- > With current Particle Flow tuning
 - Much improved agreement for neutrals
 - Still shift in energy for charged particles but the resolution is fine (5% difference) – Almost no change compared to no confusion

- > With current Particle Flow tuning
 - Much improved agreement for neutrals
 - Still shift in energy for charged particles but the resolution is fine (5% difference) – Almost no change compared to no confusion

- > With current Particle Flow tuning
 - Much improved agreement for neutrals
 - Still shift in energy for charged particles but the resolution is fine (5% difference) – Almost no change compared to no confusion
 - Induce a tail on the total visible energy

Eldwan Brianne | Particle Flow Tuning of Fast Simulation for ILC | 14.04.14, FLC Group Meeting | Page 20

- Define double counted and lost energy (only for charged particles/event):
 - E_{dc} if $E_{calo} < E_{track}$
 - E_{lost} if $E_{calo} > E_{track}$
- > With current Particle Flow tuning
 - More double counting & less lost energy in SGV
 - Correlation E_{dc}/E_{lost} needs to be tuned for SGV

Looking more into details

- Look the correlation at a jet level for charged particle inside the jet. Double counted and lost energy defined per jet.
- > Done in function of the jet energy (4 bins) :
 - $E_{jet} < 60 \text{ GeV}$
 - 60 GeV $< E_{jet} < 105$ GeV
 - $105 \text{ GeV} < \text{E}_{jet} < 165 \text{ GeV}$
 - $E_{jet} > 165 \text{ GeV}$

Energy correlation per jet

Seems to be ok for low energy jets.

Energy correlation per jet

- Full simulation shows a significant correlation for high energy jets which is not present in SGV.
- Tail for double counted Energy in SGV.

Neutral & Charged energy per jet

- Rather good agreement for low energetic jets
- Neutral & Charged energy are mirrors of each others

Neutral & Charged energy per jet

- > Particle Flow parametrization seems increase the energy in the 20-50% region → should do it over 50% region
- Need to reduce the charged energy in 20-50% region

First Ideas

- > First few ideas to do :
 - In case of complete split \rightarrow reject the track (look into it first)
 - Relax E/p criterion
 - Looping several times over the cluster list
 - Checking the jet angular dependence
- > Redo the plots and look at the changes

First idea : Track selection in Pandora

Categorization based on track parameters > : d0, z0, r_{min} and track energy

>

Pandora

Drop tracks in case of complete split, > taking into account Pandora criterions.

First Idea : Current status in SGV

> Idea :

- Complete split → the energy of the charged cluster is then assigned as a neutral cluster, in addition the track is kept.
- Need to drop the track in this case → reduction of charged energy

Conclusion

- Fast simulation with particle flow calorimeter is a new challenge
- SGV is already close to what Pandora is doing in full simulation
- Remaining puzzle : correlation between loss and double counted energy

> Outlook

- Place for improving the merging, splitting algorithm
- Maybe doing energy flow in dense region
- Need to understand the correlation between lost energy and double counted energy in full simulation in order to tune SGV
- Applying track rejection in case of complete split & look changes

Backup Slides

Eldwan Brianne | Particle Flow Tuning of Fast Simulation for ILC | 14.04.14, FLC Group Meeting | Page 32

Backup : Simulation Framework

Backup : How is Pandora implemented in SGV?

- Particle Flow can be enabled in SGV (by changing the steering parameter for the Calo to PFL instead of PERF)
- Pflow is implemented by a routine named ZAUPFL which simulate Pandora (shower shapes, splitting and merging into clusters)
- > Then a routine ZACCON is called to simulate confusion in clusters (can be dummy or not)
- In ZACCON, a routine eflow_par is called, declare pflow parameters (depending on dc or loss energy) and a do a routine to read them

Backup : Routine ZAUPFL

- > Used to promote showers to clusters
- Figure out parameter for each shower : type, closest neighbor of the same type, energy, barrel or forward calorimeter, other closed clusters
- Simulate particle flow with inputs : cluster properties, closest neighbor and distance. Output the energy kept by the particle and lost energy. Calling the ZACCON routine.
- > Remove zero energy clusters and showers after confusion routine.

Backup : Routine ZACCON

- Routine to simulate confusion
- Calculate a probability (function using parameters and few pseudo-random numbers) of split in case of dc or loss energy
 - If complete split, assign to a neutral cluster with full energy
 - If partial, calculate the em fraction of right energy in the cluster (depending on distance to the closest neighbor, energy and random number and assign rest to wrong energy.
 - Loss case :

- Look if wrong energy can be integrated with the neighbor respecting a coherent E/p (check 10 loops) then reassign cluster energy.
- > If no neighbor, no splitting

> Look if right energy has still a coherent E/p (check 2 loops), re-loop if not

Eldwan Brianne | Particle Flow Tuning of Fast Simulation for ILC | 14.04.14, FLC Group Meeting | Page 36

- > Module in order to declare and read which parameters to use for particle flow depending on the type of particle, and the case of double counting or loss of energy.
- Read parametrization files : em_dc_5.dat, em_loss_5.dat, had_dc_5.dat, had_loss_5.dat
- > Parameters :
 - spvsdnp, spvsdnpkc2, spnorm, zprob
 - tfit2, avefrac_e, avefrac_d
 - avefrac_norm
- > Theses parameters correspond to the fit parameters of 2D confusion probability functions

TrackMCTruthLink

- > Now we need to go more in detail
- > Use of RecoMCTruthLinker in full relations
- Need to understand how Pandora is working in full simulation

Plot of weights indicating the contribution of a MC particle to a track and the inverse relation

Backup : Parametrizing Particle Flow Performance

- > Pandora track selection :
 - Efficiency in full sim : tracks used by Pandora (associated to PFO) / tracks left after selection
 - Efficiency in SGV : tracks left after selection / tracks associated to PFO (by definition of SGV, all tracks are associated to a PFO)
- ➤ Tracking selection → good efficiency but in the central region not enough (due to curlers)
- In SGV : could add an efficiency for forming PFOs (not all tracks pass through the selection)

Backup : Comparison SGV Pflow / full simulation

> With Pflow

- More double counting & less lost energy in SGV
- Correlation E_{dc}/E_{lost} needs to be tuned for SGV

