isolated lepton finder

Claude Duerig (DESY) Junping Tian (KEK)

High Level Reconstruction Workshop, July 6-10 @ DESY

idea to select a isolated lepton (e/μ)

i) lepton ID: electron or muon

- energy ratio deposited in ECal, HCal, Yoke
- general PID: dE/dx + shower profile
- ii) vertex: prompt or secondary
 - ▶ d0, z0 significance: $d0/\delta d0$, $z0/\delta z0$
- iii) isolation: not from jets
 - relatively high P
 - almost empty around

status of available tools

i) lepton ID: electron or muon

- energy ratio deposited in ECal, HCal, Yoke
- general PID: dE/dx + shower profile to be added
- ii) vertex: prompt or secondary
 - ▶ d0, z0 significance: $d0/\delta d0$, $z0/\delta z0$
- iii) isolation: not from jets
 - relatively high P
 - almost empty around

several algorithms exist

two isolation algorithms in DBD

cone based

(Ryo/Junping/Tomohiko)

(M.Amjad/LAL group)

jet based

both available during DBD, in MarlinReco/Analysis/IsolatedLeptonFinder

performance of isolated lepton finder (llHH)

	electron ID	muon ID		
+	Eecal/Etot > 0.9	Eyoke > 1.2		
+	0.5 < Etot/P < 1.3	Etot/P < 0.3	(Etot = Eecal + Encal)	
+	from primary vertex	from primary vertex		
+	P > 12.2 + 0.87Econe	P > 12.6 + 4.62Econe	isolation	

efficiency of two isolated lepton selection (DBD ZHH analysis)

Eff (%)	eeHH	μμΗΗ	bbbb	evbbqq	µvbbqq
DBD	85.7	88.4	0.028	1.44	0.1
LoI	81.9	85.4	0.43	2.71	1.94

both cone based, Eyoke and impact parameters were not used in LoI

main contamination:

- For electron: charged pion (in exchange with nuclei in ECAL —> neutral pion —> two photons —> very like electron); electron from b-jets (larger IP).
- For muon: high momentum charged pion (escape from HCAL and reach the Yoke); muon from b-jets (larger IP).

idea for further suppression:

- utilize d0, z0, cone energy, momentum, Eecal/Ehcal more effectively —> MVA
- introduce a larger cone to magnify the jet influence —> E(lep)/E(jet) and angle between them (similar with in LAL algorithm, but no need to do jet clustering)

cos=0.98, 95

input variables: electron

input variables: muon

neural-net output (tagging)

lepton tagging is associated to the selected lepton collection, can be optimized in final selection

performance of new isolated lepton tagging

efficiency of two isolated lepton selection (DBD ZHH analysis)

Eff (%)	eeHH	μμΗΗ	bbbb	evbbqq	µvbbqq
NEW	87.0	89.1	0.0017	0.32	0.020
DBD	85.7	88.4	0.028	1.44	0.10
LoI	81.9	85.4	0.43	2.71	1.94

performance is a factor 3~4 better for one lepton selection, ~one order better for lepton pair. see detail in Claude's ZHH analysis

Available Processors

to appear in MarlinReco/Analysis/IsolatedLeptonTagging (Claude/Junping)

- for one isolated lepton selection: trained using lvbbqq and bbbb samples. use IsolatedLeptonTaggingProcessor
- for isolated lepton pair (from Z) selection (provide as examples): several training available (weak dependence), for ZH and ZHH, e.g. ZHHII4JLeptonSelectionProcessor, ZHIIXLeptonSelectionMVAProcessor

in processor of pair selection, also available sophisticated BS/FSR recovery currently being used by many analyses: leptonic recoil, self-coupling, Higgsino, anomalous HVV coupling, etc.

example of BS/FSR recovery

other similar MVA based isolated lepton finder

- developed in ZHH, H—>WW* analysis by Masakazu, shower profile is include
- developed in ttH analysis by Y.Sudo, isolated tau is include
- next step: to combine / optimise input variables

backup

number of PFOs in a charged lepton jet

(from cheated jet clustering)

1 E 10⁻¹ **e**⁻ 10⁻² 10⁻³ 8 10 12 14 18 20 6 16 number of PFOs in the electron jet 1

Normalized

Normalized

number of PFOs in a charged lepton jet

(from cheated jet clustering)

look into the charged lepton jet

(from cheated jet clustering)

energy of the neural PFOs

angle between the neural PFO and the charged lepton

over 90% of the neural PFOs are inside the cone $\cos \theta_{\text{Cone}} = 0.998$