Study of FCNC top decay $t \rightarrow ch$: an update

Aleksander Filip Żarnecki

Faculty of Physics, University of Warsaw

ILD Analysis/Software Meeting June 10, 2015

Large enhancement of FCNC top decays expected in many BSM scenarios

Model	$ BR(t \to c h) $	$BR(t \rightarrow c \gamma)$	$BR(t \rightarrow c g)$	$BR(t \to c Z)$
SM	$3\cdot 10^{-15}$	$5\cdot 10^{-14}$	$5\cdot 10^{-12}$	10^{-14}
2HDM	10 ⁻⁵ - 10 ⁻⁴	10 ⁻⁹	10^{-8}	10^{-10}
2HDM (FV)	10 ⁻³ - 10 ⁻²	$10^{-6} - 10^{-7}$	10^{-4}	10^{-6}
MSSM	10 ⁻⁵ - 10 ⁻⁴	10^{-8} - 10^{-6}	10^{-7} - 10^{-4}	$10^{-8} - 10^{-6}$
R SUSY	10 ⁻⁹ - 10 ⁻⁶	10^{-9} - 10^{-5}	10 ⁻⁵ - 10 ⁻³	10^{-6} - 10^{-4}
Little Higgs	10 ⁻⁵	$1.3 \cdot 10^{-7}$	$1.4 \cdot 10^{-2}$	$2.6\cdot 10^{-5}$
Quark Singlet	$4.1 \cdot 10^{-5}$	$7.5 \cdot 10^{-9}$	$1.5 \cdot 10^{-7}$	$1.1\cdot 10^{-4}$
Randal-Sundrum	10 ⁻⁴	10 ⁻⁹	10^{-10}	10 ⁻³

For details see presentation at Analysis/Software Meeting on March 25th

Motivation

Decay $t \rightarrow c h$ in 2HDM is an interesting scenario:

- large enhancement both on tree and loop level
- well constrained kinematics
- seems to be most difficult for LHC

Limits on top FCNC decays from LHC (Moriond 2015):

$BR(t \rightarrow qZ)$	<	0.05%	(CMS)
$BR(t ightarrow c \gamma)$	<	0.18%	(CMS)
$BR(t ightarrow u\gamma)$	<	0.016%	(CMS)
BR(t ightarrow cg)	<	0.016%	(ATLAS)
BR(t ightarrow ug)	<	0.0031%	(ATLAS)
BR(t ightarrow ch)	<	0.56%	$(CMS, 20 \text{ fb}^{-1})$
BR(t ightarrow ch)	<	0.79%	(ATLAS, 25 fb^{-1}

Dedicated implementation of 2HDM(III) prepared by Florian Straub. Many thanks are also due to Juergen Reuter and Wolfgang Kilian...

Test configuration of the model:

• $m_{h_1} = 125 \,\, {
m GeV}$

•
$$\mathsf{BR}(t
ightarrow ch_1) = 10^{-3}$$

• BR
$$(h
ightarrow bar{b}) = 100\%$$

Generated samples

- $e^+e^- \longrightarrow t\bar{t}$ (2HDM/SM)
- $e^+e^- \longrightarrow ch_1\overline{t}, \ t\overline{c}h_1$ (2HDM)
- $e^+e^- \longrightarrow cb\bar{b}\bar{t}, \ t\bar{c}b\bar{b}$ (SM)

Assume that we can select high purity $t\bar{t}$ sample

⇒ main background to FCNC decays from standard decay channels

All events generated with CIRCE1 spectra + ISR Only t, W and h defined to be unstable. No hadronization/decays.

For details see presentation at Analysis/Software Meeting on April 15th

Detector description

- detector acceptance for leptons: $|\cos \theta_I| < 0.995$
- detector acceptance for jets: $|\cos \theta_j| < 0.975$
- jet energy smearing:

$$\sigma_E = \left\{ egin{array}{ccc} rac{S}{\sqrt{E}} & {
m for} & E < 100 \, GeV \ \ rac{S}{\sqrt{100 \; GeV}} & E > 100 \, GeV \end{array}
ight.$$

with S = 30% (presented previously) \Rightarrow also 50% and 80% [GeV^{1/2}]

• b tagging (misstagging) efficiencies: (LCFI+ presentation, Dec. 2013)

Scenario	b	С	uds
Ideal	100%	0%	0%
Α	90%	30%	4%
В	80%	8%	0.8%
С	70%	2%	0.2%
D	60%	0.4%	0.08%

Signal selection

Main background to top FCNC decay $t \rightarrow ch$ from SM top decays. Hadronic (6 jet) and semi-leptonic (4 jet $+ l + p_T$) final states considered

Background reduction by comparison of two hypothesis:

background

$$\chi_{bg}^{2} = \left(\frac{M_{bl\nu} - m_{t}}{\sigma_{t,lep}}\right)^{2} + \left(\frac{M_{l\nu} - m_{W}}{\sigma_{W,lep}}\right)^{2} + \left(\frac{M_{bbq} - m_{t}}{\sigma_{t,had}}\right)^{2} + \left(\frac{M_{bq} - m_{W}}{\sigma_{W,had}}\right)^{2}$$

signal

$$\chi^2_{sig} = \left(\frac{M_{bl\nu} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{M_{l\nu} - m_W}{\sigma_{W,lep}}\right)^2 + \left(\frac{M_{bbq} - m_t}{\sigma_{t,had}}\right)^2 + \left(\frac{M_{bb} - m_h}{\sigma_h}\right)^2$$

Width parameters depending on the assumed resolution and beam energy

Correlation of $\log_{10}\chi^2$ for two hypothesis for hadronic events @ 500 GeV

Jet energy resolution 30%

Correlation of $\log_{10}\chi^2$ for two hypothesis for hadronic events @ 500 GeV

Jet energy resolution 50%

Correlation of $\log_{10}\chi^2$ for two hypothesis for hadronic events @ 500 GeV

Jet energy resolution 80%

Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

Jet energy resolution 30%

Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

Jet energy resolution 50%

Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

Jet energy resolution 80%

Signal - background separation still possible, but with decreasing efficiency

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ for 500 fb⁻¹ @ 500 GeV and different jet energy resolutions assumed

Worsening jet energy resolution \Rightarrow tighter cuts & b-tagging required

Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging

Collision energy 500 GeV

Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging

Collision energy 380 GeV

Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging

Collision energy 500 GeV

Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging

Collision energy 1000 GeV

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

Collision energy 380 GeV

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

Collision energy 500 GeV

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

Collision energy 1000 GeV

Signal - background separation improves slightly for hadronic events. Visible loss of efficiency in semi-leptonic channel.

A.F.Żarnecki (University of Warsaw)

Study of FCNC top decay

Collision energy and luminosity

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Collision energy and statistics

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Jet energy resolution and luminosity

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Collision energy 500 GeV

Measurement of FCNC top decays is statistics limitted. In most cases, optimal selection cuts give less than 1 expected bg event.

Similar sensitivity at different collision energies, expected limits depend mainly on the number of produced $t\bar{t}$ pairs...

Measurement of FCNC top decays is statistics limitted. In most cases, optimal selection cuts give less than 1 expected bg event.

Similar sensitivity at different collision energies, expected limits depend mainly on the number of produced $t\bar{t}$ pairs...

Selection efficiency strongly depends on the jet energy resolution. At 500 GeV, $30\%/\sqrt{E}$ require 25% less luminosity than $50\%/\sqrt{E}$, $80\%/\sqrt{E}$ require twice as much luminosity as $50\%/\sqrt{E}$ (for same limit) Largest impact observed when running at 380 GeV

Measurement of FCNC top decays is statistics limitted. In most cases, optimal selection cuts give less than 1 expected bg event.

Similar sensitivity at different collision energies, expected limits depend mainly on the number of produced $t\bar{t}$ pairs...

Selection efficiency strongly depends on the jet energy resolution. At 500 GeV, $30\%/\sqrt{E}$ require 25% less luminosity than $50\%/\sqrt{E}$, $80\%/\sqrt{E}$ require twice as much luminosity as $50\%/\sqrt{E}$ (for same limit) Largest impact observed when running at 380 GeV

Expected limits on $BR(t \rightarrow ch)$ below $\sim 10^{-4}$

Limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$, at 500 GeV, vary from $\sim 10^{-4}$ for $80\%/\sqrt{E}$ jet energy resolution and 500 fb⁻¹ to $\sim 10^{-5}$ for $30\%/\sqrt{E}$ jet energy resolution and 3500 fb⁻¹

Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

A.F.Żarnecki (University of Warsaw)

Sensitivity to BR(t
ightarrow ch) estimated with parton level simulation

- only tt background considered
- no effects of hadronization/decays (τ , B...)
- very simplified description of detector effects

Sensitivity to BR(t
ightarrow ch) estimated with parton level simulation

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very simplified description of detector effects
- final state reconstruction and *b*-tagging not optimized
- angurlar distributions not taken into account
- polarization not taken into account
- selection cuts not optizmized (except for $\Delta \chi^2$)

Sensitivity to BR(t
ightarrow ch) estimated with parton level simulation

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very simplified description of detector effects
- final state reconstruction and *b*-tagging not optimized
- angurlar distributions not taken into account
- polarization not taken into account
- selection cuts not optizmized (except for $\Delta\chi^2$)

Results are just estimates!

Sensitivity to BR(t
ightarrow ch) estimated with parton level simulation

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very simplified description of detector effects
- final state reconstruction and *b*-tagging not optimized
- angurlar distributions not taken into account
- polarization not taken into account
- selection cuts not optizmized (except for $\Delta \chi^2$)

Results are just estimates!

Plans for the next months:

- Prepare signal event samples for full simulation
- Look at available $t\bar{t}$ and background samples
- Consider other decay channels

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 30%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 80%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 30%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 80%

Expected limit

Expected 95% C.L. limit on the number of signal events calculated as an average limit from multiple "background only" experiments, with number of observed events generated from Poisson distribution.

