Reconstruction of $X \rightarrow$ tau tau

e.g.

$$
\mathrm{e}+\mathrm{e}-\rightarrow(\mathrm{H} \rightarrow \text { tau tau) }(Z \rightarrow \text { mu mu) }
$$

an intermediate status report

U. Tokyo

June 2015

Motivation:

the Higgs decay modes
ZZ WW tau tau (converted photons)
are particularly interesting, because spin state of W, Z, tau are to some extent reflected in the distribution of their decay products

Allows measurement of e.g. Higgs CP properties $H(125)=\cos ($ phi $) C P(+1)+\sin (p h i) C P(-1)$

H \rightarrow tau tau ~ 6\% @ 125 GeV
~2 * larger than ZZ
fermionic

Some tau decay modes:
$\sim 11 \%$ tau $^{+} \rightarrow$ pi $^{+}$tau_neutrino
Simplest case \leftarrow this talk
-25\% tau ${ }^{+} \rightarrow$ pi $^{+}$pi 0 tau_neutrino
Large $B R$, also useful
~35\% tau ${ }^{+} \rightarrow$ lepton ${ }^{+}$tau_neutrino I_neutrino
two missing neutrinos \leftarrow limited information

We would ideally like to fully reconstruct the tau momentum and its decay products to get as much information as possible
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$

-V
both tau \rightarrow pi nu

For 60 GeV tau, gamma*c*t $\sim 3 \mathrm{~mm}$ ILD impact parameter resolution ~ 5 microns

Unmeasured quantities
2 x neutrino 3-momenta lost ISR photons

Kinematic constraints
overall 4-momentum conservation
$2 x$ tau decay kinematics \leftarrow more details next
tau-tau mass (if we assume H->tau tau) mu-mu mass not useful: resolution much better than Z width

- V

$\nabla \pi^{-}$

The only thing we measure is helical π^{-}trajectory

- v

We know that:

- endpoint of tau lies on pi- trajectory

The only thing we measure is helical π^{-}trajectory

- V

We know that:

- endpoint of tau lies on pi- trajectory
\rightarrow neutrino momentum lies in plane defined by tau- and pi- momenta

If we assume that pi- trajectory is linear, OK since track radius of curvature >> tau decay length
neutrino momentum is in plane defined by
IP-PCA vector and
momentum @ PCA

> | 2 constraints from |
| :--- |
| each tau decay |

invariant mass of
4-momentum @ PCA and neutrino 4-momentum = tau mass

Let's test these ideas:
private production of
e+e- \rightarrow Z H \rightarrow mu mu tau tau events
Whizard 2.2.2,
with ISR, beamstrahlung (also samples without)
250 GeV centre-of-mass
eL pR beam polarisation
Tau decay to pi-neutrino only
Tauola 1.1.4, with correct spin correlations
simulated in ILD detector (Mokka)
ILD_o1_v06 detector model
ilcsoft v01-17-04 reconstruction
use tracks from MarlinTrkTracks collection
PID by MC cheating (for now)
an event

ISR properties actually ISR + beamstrahlung

- total Energy
- invariant mass of sum of all ISR/BS photons \leftarrow zero if only on one side e.g. single ISR photon
photons on both sides

"significant" photon(s) on only one side

the reconstructed muon tracks

higgs_mumuMass

Charged pion track parameters [in mm]

Cross-check

Angle between
 MC tau momentum and

reconstructed plane of pion track
(should ideally be 0)

Momentum
@ PCA

First approach:

Constrained kinematic fitting
Using MarlinKinFit package
extended to use LCIO tracks (with full covariance matrix) a lot of patient help from Jenny \& Benno List
neutrino momenta: unknown parameters muon \& charged pion tracks: measured parameters (ISR treatment also possible, using expected ISR distribution)

Overall 4-momentum constraint
Tau mass constraints
Tau decay plane constraints

Adjust measured and un-measured paramteters to satisfy constraints, while minimising the "chisq" (deviations from measured values)

Choice of starting position for neutrino momentum turns out to be rather important
here use randomly smeared direction around charged pion track

Value of constraints before fitting far from being satisfied

Units are
GeV for momenta/masses cos(angle) for decay plane

Fit results

higgs_fiterror[0]

Only very small fraction of fits converge
Those that do look somewhat OK, but not great...
If initial guess for neutrino momenta are smeared around MC value, it works much better \leftarrow need better initial estimates

Value of constraints after converged fitting

Constraints well satisfied: Fitter itself is working ~OK

Units are
GeV for momenta/masses cos(angle) for decay plane

It seems essential to have a good initial estimate of unknown quantities (neutrino momenta) before applying a constrained kinematic fit

Second approach:
Try to calculate the unknown quantities Ignore uncertainties on measured quantities

$$
\underline{\mathrm{d}}=\mathrm{IP} \rightarrow \mathrm{PCA}
$$

$$
\mathrm{p}=\text { momentum @ PCA }
$$

- $V(\underline{q})$
\underline{d} and p are perpendicular in $x-y$, but not in $3 d$ define $\underline{\mathrm{d}^{\prime}}=\underline{p} \times(\underline{d} \times \underline{p}) \leftarrow$ inside p-d plane, perpendicular to p
neutrino momentum q lies in plane of \underline{d} and p so we can write: $q=|q|\left(\cos \psi p^{*}+\sin \psi \underline{d}^{\prime *}\right)$
where \underline{x}^{\star} is a unit vector: $\underline{x} /|x|$
We know that the invariant mass of $(p+q)$ is $m_{\text {tau }}$ so we can calculate the neutrino energy $|q|$ for each value of ψ

For a given event, we can then see how the total event pT (muons, pions, neutrinos)
should be ~ 0, even with lost ISR
depends on the
angles $\mathbf{\psi 1}, \mathbf{\Psi} \mathbf{2}$ (for the 2 taus)

For a given event, we can then see how the total event pT (muons, pions, neutrinos)
should be ~ 0, even with lost ISR depends on the angles $\mathbf{\psi 1}, \mathbf{\Psi} 2$ (for the 2 taus)

$\Psi=0$ corresponds to neutrino colinear with pion needs large energy to make tau mass gives very large pt imbalance

$$
\underline{q}=|q|\left(\cos \psi \underline{p}^{*}+\sin \psi \underline{d}^{*}\right)
$$

We can see local minima in each of the 4 quadrants Is the nu momentum on the $d=+$ ve or - ve side of the pion momentum

A few more events:

color $=\mathrm{pT}\left(\begin{array}{llll}0.1 & 1 & 10 & 100\end{array}\right) \mathrm{GeV}$
by requiring pt-balance in the event
[sum $\mathrm{px}=$ sum $\mathrm{py}=0$] it is possible (but somewhat messy) to calculate the angles Ψ due to finite resolution of measured quantities, a real solution is not always possible More robust approach is to do a standard minimisation [i.e. not a constrained fit] to minimise the event pT
chisqDet_4

Minuit minimisation separately in each quadrant (no constraints needed)

\rightarrow Four solutions
How to choose which one is the best?
Value at minimum $\leftarrow \mathrm{pt}$ as small as possible Comparison of $|\mathrm{pz}|$ and missing energy \leftarrow same, if 1 ISR photon invariant mass of 2 taus (if we assume presence of Higgs)
chisqDet_4

For now, define "best" solution as one with smallest value of pT + missing mass

If we have zero or one ISR photon, missing mass $=0$

Check: Invariant mass of two taus, total pz (e.g. of ISR)
n.b. we have not used these in any part of the analysis
hHiggsMissMass

Compare fitted and true neutrino energies and directions

Angle between MC and fitted neutrinos [rad]

higgs_besiNeuAng (higgs_besiNeuAng-0.1\}

hlggs_bestiNeuDE \{abs(higgs_besiNeuDE)c5\}

Only best solution

Precision typically $<\sim 10 \mathrm{mrad}$ $<\sim \mathrm{GeV}$
recoil mass (from muons) vs. reconstructed tau-tau mass
Only best solution

As expected, this method of mass reco not affected by ISR unlike recoil mass

How well is ISR/BS energy and pZ reconstructed?

Summary

It's interesting to try to fully reconstruct taus: they can act as "polarimeters"
\rightarrow can reconstruct their spin state by looking at their decay products
The ILC machine and detectors have great potential for tau reco: tiny beam spot high precision vertex detector

In hadronic tau decays of (tau tau + "X") processes we can calculate the tau neutrino momenta with good precision if we can measure $\mathrm{p} T$ of " X "

If this is not possible, other approaches may be possible
\rightarrow make different assumptions about event
Kinematic fitting should give some improvements in precision take account of uncertainties in measured quantities
tools are ~in hand

Things to do next:

- apply kinematic fit on the identified (best) solutions may improve the resolution
- apply to tau \rightarrow rho nu decay mode

I think (almost) same method can be used
Multi-prong decays should be easier
Identify vertex \rightarrow tau momentum direction
Leptonic decays need more constraints
maybe if only one tau decays leptonically,
something can still be done with some extra assumptions

- apply to Higgs CP measurement

