Cluster Uncertainties - a basis for discussion -

ILD sw/ana meeting, June 17 2015

Jenny List

What?

- Particle flow, "1st order":
 - very successful reconstruction of jet energy
 - jet energy resolution 3-4%
 - but: JER averaged over all jets!
- Particle flow, "2nd order":
 - exploit the full power of PFlow by assigning jet-by-jet uncertainties following PFlow paradigm:

$$\sigma_{\text{jet}} = f_{\text{charged}} \sigma_{\text{track}}$$
 "+" $f_{\text{photon}} \sigma_{\text{ECal}}$ "+" $f_{\text{neut.had.}} \sigma_{\text{HCal}}$ "+" $\sigma_{\text{confusion}}$

Why?

- the neutral hadron fraction varies considerably
- jets with small neutral hadron fraction are better measured!
- E.g. G. Wilson: Higgs mass reco with event-by-event error knowledge (and pi0 fitting)

How?

$$\sigma_{\text{jet}} = f_{\text{charged}} \sigma_{\text{track}}$$
 "+" $f_{\text{photon}} \sigma_{\text{ECal}}$ "+" $f_{\text{neut.had.}} \sigma_{\text{HCal}}$ "+" $\sigma_{\text{confusion}}$

Reconstruction flow of a jet:

- calorimeter hits
- form Clusters
- combine w tracks to PFOs
- combine to Jets
 - => at which level should confusion enter error calculation?

Measured in calo

PFlow Algorithm (Pandora)

Jet Algorithm

Increasing confusion

Proposal

Clusters:

- estimate uncertainties purely from calorimetric measurement
- no attempt to take into account confusion

PFOs:

- track uncertainty for charged PFOs
- cluster uncertainty for neutral PFOs
- confusion?
 - conceptionally: to be discussed eg for neutrals based on distance to next charged? Based on Pandora reclustering?? Or not at all at this stage?
 - pragmatically: no confusion for now, see where it get's us!

Jets:

- obvious place to try to add confusion
- still needs work and discussion to find a good approach!
- having the unconfused cluster / PFO uncertainties will be a prerequisite to study this

EVENT::Cluster – my assessment

Properties:

- virtual float <u>getEnergy</u> () const =0
 Energy of the cluster. filled
- virtual const float * <u>getPosition</u> () const =0 Position of the cluster.
- virtual float <u>getTheta</u>/Phi () const =0
 Intrinsic direction of cluster at position: Theta /Phi

not filled?

Uncertainties:

- virtual float <u>getEnergyError</u> () const =0
 Returns the error on the energy of the cluster.
- virtual const <u>EVENT::FloatVec</u> & getPositionError () const Covariance matrix of the position (6 Parameters).

not filled

 virtual const <u>EVENT::FloatVec</u> & <u>getDirectionError</u> () const Covariance matrix of the direction (3 Parameters).

not filled

Proposal for First Steps

- add energy error to EVENT::Cluster
- assign uncertainties for energy / position
 - based calorimetric measurement
 - depending on E_{cluster} (add theta, phi dependency later?)
 - evaluate "brute force" with particle gun
 - compare with testbeam (beware of different support structures etc)
- fill instrinsic direction (cluster main axis) and its uncertainty

 again particle gun...
- clusters are created by Pandora natural place to fill these quantities
- however resolutions: should be proposed from / discussed with Calice

EVENT::ReconstructedParticle

- virtual const <u>FloatVec</u> & <u>getCovMatrix</u> () const =0
 Covariance matrix of the reconstructed particle's 4vector
 (10 parameters).
- currently not filled
- Tino Calancha is working on filling this for charged PFOs from track covariance matrix
- Straight forward to extend to neutral PFOs –
 if we had the cluster uncertainties!

Discussion

- your comments?
 - other opinions?
 - wild protest?
 - better ideas?
 - volunteers?