W mass direct measurement via Single-W process

Shinshu University K. Tsuchimoto

19th, June 2015 : —> Current status of my study

Status

- What I have done (today's report);
 - study of the systematic error from JES uncertainty
 - building the PDF which describes analytic m_{W} line shape
- · To do;
 - other systematics study
 - hadronization, pileup, PFA tunes, etc.
 - different E_{CM} (500GeV, 1TeV)
 - with more realistic situation (perfect PFO for now)

Estimate systematic error from JES

Template fitting result

systematic error here is defined as $m_W^{MC1,\,MC5} - m_W^{MC0}$

template —> data	fitted m _W [GeV]	systematic error [GeV]
MC0 —> D0 (true W mass)	80.413 ± 0.006	
MC1 —> D0 (1% JES uncertainty)	80.333 ± 0.005	-0.080 (0.1%)
MC5 —> D0 (5% JES uncertainty)	80.061 ± 0.014	-0.352 (0.44%)

if the jet energy scale is known only to 1%, systematic error is 0.1% as for 5% case, systematic error is 0.44%

Analytic m_W distribution model

- Analytic model PDF is defined as 'physics model' convoluted with 'detector model'
 - physics : relativistic Breit-Wigner —> describes generator level m_w line shape well
 - detector (before) : simple mono-Gaussian —> cannot describe detector effect well
 - detector (for now) : linear sum of triple-Gaussian —> ???

Analytic m_W fitting

rel BW (physics) \otimes triple Gaus (detector)

using Minuit minimization DO as same as above 11 pars; 10 free pars 1 fixed (Γ_W)

 $m_W = 80.21 \pm 0.02 \text{ GeV}$ $\delta m_W = 200 \text{ MeV}$ $m_W \text{ error} = 20 \text{ MeV}$

need to confirm the validity of this result

... another minimization package?

Summary and next

- W mass systematic error from JES uncertainty is
 - 80 MeV for 1% JES uncertainty (relative 0.1%)
 - 352 MeV for 5% JES uncertainty (relative 0.44%)
- The relBW convoluted with tri-Gaus resolution model looks good to describe the W mass distribution
 - we need to check the consistency of obtained result, estimated m_w error is 20 MeV
- For the next,
 - binning and fitting range scan with analytic PDF above

Back up

