Higgs Recoil Mass Study

ILC Physics Meeting

Jacqueline Yan (KEK)

CV 5201

Current Status & New Activities

Last week (General Meeting):

 showed full results of ZH analysis using Kernel function fitting (all leptonic channels, ECM, and beam polarization)

 confirmed minimum bias due to Ptsum cut using current nominal statistics samples

What 's NEW this week

 formed plan for Higgs recoil study based on discussions at General Meeting

 checked Higgs decay mode dependence using high statistics sample generated for EACH DECAY MODE
 + investigate the bias using MC Truth Info.

0.8,+0.3)		xsec err	mass err [MeV]
250GeV	Zmm	3.35%	40.4
	Zee	4.76%	109
	Total	2.74%	37.9
350GeV	Zmm	3.90%	101
	Zee	5.63%	327
	Total	3.21%	96.5
500GeV	Zmm	6.95%	474
	Zee	9.89%	1540
	Total	5.69%	453

Mass error

•350 GeV is worse by factor of slightly less than 3 w.r.t. 250 GeV

•Zee is worse by a factor of 2 – 3 w.r.t. Zmm

•Systematic error of fitted recoil mass is negligible (< few MeV for 250, 350 GeV)

xsec error almost same as past results using GPET

Statistical error study results $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ combined

xsec error

- 350 GeV is 17 % worse w.r.t. 250 GeV
- 500 GeV is much worse
- Zee is worse by > 40% w.r.t. Zmm

right hand pol is worse by 5 – 10 % w.r.t.
 left hand

(+0.8,-0.3	3)	xsec err	mass err [MeV]
250GeV	Zmm	3.57%	40.5
	Zee	5.14%	121
	Total	2.93%	38.4
350GeV	Zmm	4.31%	112
	Zee	6.26%	296
	Total	3.55%	105
500GeV	Zmm	8.36%	613
	Zee	9.85%	1510
	Total	6.37%	568 4

Can precision can be slightly improved if we fit over a wider range ? assuming we can neglect the H^{*}→WW bump beyond 160 GeV

(-0.8,+0.3)		narrow	wide	narrow	wide	
500GeV	Zmm	6.95%	6.50%	474	468	
	Zee	9.89%	7.86%	1540	1540	10-20 %
	Total	5.69%	5.01%	453	448	improvement on
(+0.8,-0.3)						xsec and a few %
500GeV	Zmm	8.36%	7.27%	613	572	on mass precision
	Zee	9.85%	7.86%	1510	1530	
	Total	6.37%	5.33%	568	536	5

Plans for Higgs Recoil Sudy

The importance of recoil mass measurement (both leptonic and hadronic) for H20 scenario has been emphasized.

improving leptonic recoil at 500 GeV AND beginning on hadronic recoil may have higher priority than further improving precision of leptonic recoil at 250 (350) GeV ???
 at least, these need to be done in parallel.

Plan:

- (1) Investigate Higgs decay mode dependence (= systematic errors) for 250 GeV using high stat samples just about done (?)
- (2) generate higher statistics sample for 350 and 500 GeV then use these to further improve precision for leptonic channel as well as do ZZ fusion analysis at 500 GeV
- (3) Study systematic error from beam spectrum *red much time*
- (4) Begin hadronic recoil at 500 GeV personally feel this is a priority strategy : for now carry out same method as what Miyamoto-san did for Snowmass and investigate Higgs decay mode dependence the same way as I did for (1)

Immediate Plans

(1)Further Investigation of Higgs decay mode dependence (= systematic errors) for 250 GeV using high stat samples
improve isolated lepton finder :

incorporate Mrec requirement when selecting best lepton pair

•Add $H \rightarrow \gamma \gamma$ mode analysis

(2)Hadronic lepton recoil at 500 GeV currently only starting.....

(3) Think of further strategies to improve leptonic recoil precision

Efficiency of each Higgs decay mode (after each cut)

250 GeV, $Z \mu \mu$ mode

250 Ge	/ bb	сс	tt	gg	ww	zz
cut0	92.41+/-0.09%	92.43+/-0.09%	93.27+/-0.08%	91.66+/-0.09%	92.64+/-0.08%	92.77+/-0.08%
cut1	90.85+/-0.09%	90.84+/-0.09%	91.40+/-0.09%	90.06+/-0.10%	90.72+/-0.09%	90.76+/-0.09%
cut2	88.92+/-0.10%	89.07+/-0.10%	89.39+/-0.09%	88.23+/-0.11%	88.53+/-0.10%	88.49+/-0.10%
cut3	88.71+/-0.10%	88.88+/-0.10%	89.20+/-0.10%	88.03+/-0.11%	88.29+/-0.10%	88.24+/-0.10%
cut4	88.66+/-0.10%	88.80+/-0.10%	88.73+/-0.10%	87.97+/-0.11%	88.18+/-0.10%	88.13+/-0.10%
cut5	88.16+/-0.10%	88.47+/-0.10%	87.99+/-0.10%	87.82+/-0.11%	87.43+/-0.11%	87.30+/-0.11%
cut6	81.72+/-0.13&	81.74+/-0.13%	81.62+/-0.13%	81.22+/-0.13%	81.04+/-0.14%	81.14+/-0.13%
cut7	72.4+/-0.15%	72.29+/-0.15%	72.33+/-0.14%	71.91+/-0.15%	71.67+/-0.14%	71.29+/-0.15%

Cut0: isolated μ selection Cut1: loose Minv and Mrec window Cut2: 73<Minv<120 GeV Cut3: 10 < Pt_dl < 70 GeV Cut4: Ptsum > 10 GeV Cut5: cos(θ missing) < 0.98 Cut6: cos(θ Z) < 0.9 Cut7: 100 < Mrec 160 GeV

- tt, ZZ, WW affected by "mistaken lepton selection" c.f gg mode receive no particular bias (?)
- tt more biased by Ptsum cut
 - diverse effect from $\cos(heta$ missing) cut

250 GeV	e2e2_Lpol				deviation	deviation	
	N(100-160)	N_err	eff	eff_err	from avg	from ALL	
bb	1885	5	72.40%	0.15%	0.42%	0.21%	
сс	1882	5	72.29%	0.15%	0.31%	0.10%	
tt	1883	5	72.33%	0.14%	0.35%	0.15%	
gg	1872	5	71.91%	0.15%	-0.08%	-0.28%	
WW	1866	5	71.67%	0.14%	-0.31%	-0.51%	
ZZ	1856	5	71.29%	0.15%	-0.69%	-0.90%	
all modes	1883	9	72.19%	0.27%			
		avg of 6	71.98%				
	c 1 1 1		• systema	atic dias is		2000. × 4.Z/	
Efficiency decay mo	y of each Hi ode (after all (gg <u>s</u> cuts)	• H→zz, (lepton pa	H →ww mc air containi	ng lepton n	ot from pro	mpt Z decay)
Efficiency decay mo 250 GeV	y of each Hi ode (after all o e1e1 Lpol	ggs cuts)	• H→zz, (lepton pa	H →ww mc air containi	ng lepton n	ot from pro deviation	ompt Z decay)
Efficiency decay mo 250 GeV	<mark>y of each Hi</mark> ode (after all o e1e1_Lpol N(100-160)	g<u>gs</u> <u>cuts)</u> deltaN	 H→zz, (lepton page) 	H→ww mc air containi eff_err	ost affected ng lepton n deviation from avg	ot from pro deviation from ALL	mpt Z decay)
Efficiency decay mo 250 GeV bb	<mark>y of each Hi</mark> ode (after all o e1e1_Lpol N(100-160) 1491	g<u>gs</u> cuts) deltaN 6	• H→zz, (lepton pa eff 54.65%	eff_err 0.17%	deviation from avg -1.15%	ot from pro deviation from ALL -0.39%	mpt Z decay)
Efficiency decay mo 250 GeV bb cc	<mark>y of each Hi</mark> ode (after all o e1e1_Lpol N(100-160) 1491 1497	<mark>ggs</mark> cuts) deltaN 6 6	• H→zz, (lepton pa 6ff 54.65% 54.86%	eff_err 0.17% 0.16%	deviation from avg -1.15% -0.94%	deviation from ALL -0.39% -0.18%	mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt	y of each Hi ode (after all o e1e1_Lpol N(100-160) 1491 1497 1480	<mark>ggs</mark> cuts) deltaN 6 6 6	• H→zz, (lepton pa 54.65% 54.86% 54.21%	eff_err 0.17% 0.16% 0.16%	deviation from avg -1.15% -0.94% -1.58%	deviation from ALL -0.39% -0.18% -0.83%	mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg	y of each Hi ode (after all o e1e1_Lpol N(100-160) 1491 1497 1480 1484	<mark>ggs</mark> cuts) deltaN 6 6 6 6	• H→zz, (lepton pa 54.65% 54.86% 54.21% 54.38%	eff_err 0.17% 0.16% 0.16% 0.16%	deviation from avg -1.15% -0.94% -1.58% -1.42%	deviation from ALL -0.39% -0.18% -0.83% -0.66%	mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg ww	y of each Hi ode (after all o e1e1_Lpol N(100-160) 1491 1497 1480 1484 1469	ggs cuts) deltaN 6 6 6 6 6 6	 eff 54.65% 54.21% 54.38% 53.83% 	eff_err 0.17% 0.16% 0.16% 0.16% 0.16%	deviation from avg -1.15% -0.94% -1.58% -1.42% -1.96%	deviation from ALL -0.39% -0.18% -0.66% -1.21%	mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg ww zz	y of each Hi ode (after all o e1e1_Lpol N(100-160) 1491 1497 1480 1484 1469 1442	ggs cuts) deltaN 6 6 6 6 6 6 6 6	 eff 54.65% 54.21% 54.38% 53.83% 52.83% 	eff_err 0.17% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16%	deviation from avg -1.15% -0.94% -1.58% -1.42% -1.96% -2.96%	deviation from ALL -0.39% -0.18% -0.66% -1.21% -2.21%	mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg ww zz all modes	y of each Hi ode (after all o e1e1_Lpol N(100-160) 1491 1497 1480 1484 1469 1442 1502	ggs cuts) deltaN 6 6 6 6 6 6 6 6 10	 eff 54.65% 54.86% 54.21% 54.38% 53.83% 52.83% 55.04% 	eff_err 0.17% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16%	deviation from avg -1.15% -0.94% -1.58% -1.42% -1.96% -2.96%	deviation from ALL -0.39% -0.18% -0.83% -0.66% -1.21% -2.21%	mpt Z decay)

Use MC truth to investigate parent PDG of feptons in "selected pair" Z→mm

observation of Ptsum distr
(at stage just before Ptsum cut)
Zmm channel

Compare to other modes, H→tau tau seem very slightly biased in region of Ptsum < 10

BACKUP

- BG level is usually fixed for Toy MC (optimistic scenario)
- xsec error is about 10 % worse if we float BG (pessimistic scenario) not a big degradation since I fit recoil mass spectrum over a wide range

GOOD

Example:

Prevention of signal bias i.e. Higgs decay mode dependence

• the "traditional" dptbal (= |Pt,dl | - |Pt, γ |) cut for removing 2f BG (γ back-to back w.r.t. di-lepton) caused signal bias (esp. H $\rightarrow \tau \tau$, $\gamma \gamma$)

NEW #1 isolated photon finder: γ we look at have small cone energy) not from Higgs decay

NEW #2 Now use (instead of dptbal)

$$\overrightarrow{P}_{t,sum} \circ \left| \overrightarrow{P}_{t,g} + \overrightarrow{P}_{t,dl} \right|$$

vector direction info singles out back to back events

 $\sim\!100~$ Higgs decay related γ events removed by dptbal cut !!

need more careful study of Higgs decay mode bias using high stat sample

			• /			
(-0.8,+0.3)		narrow	wide	narrow	wide	
350GeV	Zmm	3.90%	3.83%	101	103	
	Zee	5.63%	5.48%	327	340	
	Total	3.21%	3.14%	96.5	98.6	Not much room
(+0.8,-0.3)						for improvement
350GeV	Zmm	4.31%	4.24%	112	113	
	Zee	6.26%	6.15%	296	328	
	Total	3.55%	3.49%	105	107	16

Performance of data selection

in fitting range 100-160 GeV

(-0.8,+0.3)		significance	Nsig	Nbg
250GeV	Zmm	18.3	1879	8692
	Zee	14.4	1502	9394
350GeV	Zmm	17.7	1462	5332
	Zee	14.1	1156	5597
500GeV	Zmm	11.1	626	2572
	Zee	8.7	439	2087
(+0.8,-0.3)		significance	Nsig	Nbg
250GeV	Zmm	19.7	1264	2834
	Zee	12.8	1096	6231
350GeV	Zmm	17	1002	2486
	Zee	12.7	602	1627
500GeV	Zmm	9.9	414	1339
000000		0.0		1000

- In general, significance is 250 > 350 > 500 GeV, Zmm > Zee
- right hand polarization: case by case:

(lower BG, but also smaller signal statistics)

Progress since the last (41th) General Meeting (April 11)

<u>Last Time</u>

- only $Z \rightarrow \mu\mu$ channel
- only ECM = 250 GeV and 350 GeV
- only study of xsec precision
- slight Higgs decay mode bias caused by BG rejection method

Features of This Time

- both $Z \rightarrow \mu \mu$ and $Z \rightarrow ee$ channels
- all three ECM (250, 350, 500 GeV)
- study of both xsec and mass precision
- signal bias is minimized due to improved
 chniques (details later)
- + deeper study of the signal and BG statistics of each channel
- Currently converging towards a full set of statistical error study results
- **optimized data selection method for each of the 12 scenarios** (3 ECM x 2 leptonic channels x 2 polarizations) in aim of best xsec and mass precision
- Removed systematic bias due to method of fitting or data selection

Lepton Pair Candidate Selection

opposite +/- 1 charge

- E_cluster / P_total : < 0.5 (μ) / > 0.9 (e)
- isolation (small cone energy)

ightarrow removes nearly all 4f_WW_sl BG

- Minv closest to Z mass
- |D0/δD0| < 5

Final Selection

•73 < GeV < M_inv < 120 GeV

• 10 GeV < pt_dl < 140 GeV

$$\left| \overrightarrow{P_{t,sum}} \right|^{\circ} \left| \overrightarrow{P_{t,g}} + \overrightarrow{P_{t,dl}} \right| > 10 \text{ GeV}$$

- |cos(θ_missing)| < 0.98
- |cos(θ_Z)| < 0.9
 100 GeV < Mrecoil < 160 GeV

• L kelihood cut

Example of ECM=350 GeV,

Data selections designed to guarantee Higgs decay mode independence

Optimized in terms of signal significance and xsec measurement precision

definition

- M_inv : invariant mass of 2 muons
- pt_dl : pt of reconstructed lepton pair
- pt,γ : pt of most energetic photon
- θ_{missing} = polar angle of undetected particles
- $\theta_Z = Z$ production angle

- Effective for cutting $\mu \mu$ / ee BG
- Use info of most energetic photon $(pt_{\gamma}, cone energy)$ meanwhile minimize bias on signal

red box:

key improvements w.r.t. previous studies

similar methods applied to all ECM and polarizations

500 GeV

many challenges remaining: low statistics, low S/B ratio, ect...

Toy MC study

goal: test quality of fitting method

evaluate precision of xsec and recoil mass

<u>method</u>:

•generate MC events with 1000 x statistics according to fitted result of "real" data

•fit Toy events with same function : Kernel + polynomial

 \rightarrow get signal yield, mass shift, and errors

250 GeV Zmm left pol

250 GeV Zmm left pol

Recoil mass region aftre all cuts in 100 – 160 GeV

htemp

1872

125.5

15.31

Entries

Mean

RMS

டி

160 Mrec

150

140

Dominant BG with low MC statistics cause large errorbars (a technical problem planned to be solved by generating higher statistics samples)

compare dilepton invariant mass distribution

Zee (red) vs Zmumu (blue)

MC truth is much more back-toback (as expected)

How to explain the long isotropic tail for Reco ?

From here on we will investigate the reason for the non-back-to-back ness

especially the long isotropic tail