The Higgs Program at the International Linear Collider.

on behalf of the ILC Physics and Detector Study

Claude-Fabienne Dürig

DESY Hamburg, Germany

EPS-HEP Vienna, July 22-29 2015

Introduction

- > discovery of Higgs-like boson at LHC is milestone in history of particles physics
- **>** main task: identify boson and its connection to the SM \rightarrow last particle of SM?

 \rightarrow first particle beyond the SM?

- now test symmetry breaking and mass generation
- > open door to new physics?

> our goal: model-independent reconstruction of EWSB sector through precision measurements

- investigate mass-coupling relation
- > any deviation clear indication of BSM

> needed: comprehensive program of model-independent and direct Higgs boson measurements

m_H, g_{HZZ}, g_{HWW}, g_{Hb\bar{b}</sub>, g_{Hgg}, g_{H\gamma\gamma}, g_{H\tau\tau}, g_{Hc\bar{c}}, g_{Ht\bar{t}}, g_{Hµµ}, g_{HHH}, Γ_{H}^{tot} , Γ_{invis}

> ILC is ideally situated to give a full understanding of new boson, whatever nature it is

The International Linear Collider

- > energy range: $\sqrt{s} = 250 \text{ GeV} 500 \text{ GeV}$, upgradeable to 1 TeV
- > about 31 km site length for $\sqrt{s} = 500 \text{ GeV}$
- ▶ polarised beams (\approx 80% for $e^$ and \approx 30% - 60% for e^+)

Main Linac Electrons O Ct Ct Communication of the second of the second

Main Lina

COMMENT ON MEXT

PHOTO OF MEN WEARING SUITS

ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex]

 studied impact of running scenarios on physics output

optimise

- Higgs precision measurements
- > top physics
- new physics searches
- ▶ energy stages between (500 250) GeV
- following LHC and early ILC results:
 - best combination of dataset sizes
 - other energies may be required
- limited to 20 years before possible 1TeV upgrade

final $\ensuremath{\mathcal{L}}$ and real time required for each stage of running

Stage	ILC500			ILC500 LumiUP		
\sqrt{s} [GeV]	500	350	250	500	350	250
\mathcal{L} [fb ⁻¹]	500	200	500	3500	-	1500
time [a]	3.7	1.3	3.1	7.5	-	3.1

Integrated Luminosities [fb]

Single Higgs Production Processes

LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]

at $\sqrt{s}\,\geq\,250~GeV$

- Higgs-strahlung dominant production process
- beneficial for measuring σ_{ZH} and m_H
 - \rightarrow limited sensitivity to ${\rm g}_{\rm HWW}$

at $\sqrt{s}\,\geq\,450~GeV$

- WW-fusion process of similar size
 - \rightarrow balanced sensitivity ${\rm g}_{\rm HZZ}$ and ${\rm g}_{\rm HWW}$

at \sqrt{s} \geq 500 GeV

- \blacktriangleright process $e^+e^- \rightarrow t\bar{t}H$ accessible
 - \rightarrow probe top-Yukawa coupling $\rm g_{Htt}$

Due to these three production processes, Higgs physics exhibits the most complex interplay between different energies

Recoil Mass Technique: $m_H \rightarrow \sigma_{ZH} \rightarrow g_{HZZ}$

ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex], LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]

 $m_{\rm H} \rightarrow \sigma_{\rm ZH} \propto g_{\rm HZZ}^2$

model-independent measurement of coupling

 \rightarrow g_{H77} without Γ_{H} assumptions

- \rightarrow no Higgs reconstruction required
- ➤ well-known p_{cm} of initial e⁺e⁻system allows measurement of inclusive σ_{ZH}
- ➤ recoil technique: reconstruct Z of ZH event → recoil mass of decay products give m_H

$$M_X^2 = (p_{cm} - (p_{l+} \! + \! p_{l-}))^2 \,, \quad (l^\pm = e^\pm, \, \mu^\pm)$$

	ILC500	ILC500 LumiUP		
$\Delta m_{\rm H}$	25 MeV	15 MeV		
$\Delta g_{\rm HZZ}/g_{\rm HZZ}$	0.58 %	0.31 %		

- detect $H \rightarrow invisible/exotic$
- precise m_H and σ_{ZH} (sub-% level)
- fixes the overall scale for all couplings

WW-fusion and 500 GeV: $g_{HWW} \rightarrow \Gamma_{H}$

ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex], LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]

compare Higgs rate measurements to SM predictions assumptions on Γ_H made

$$BR(H \to AA) = \Gamma(H \to AA) / \Gamma_{H}^{tot} \to total width too narrow to be measured directly$$

WW-fusion production dominant at 500 GeV

$$e^+e^- \rightarrow \nu \bar{\nu} H$$
 with $H \rightarrow b\bar{b}$

using relation

$$\begin{split} \sigma_{\nu\,\nu\,H} \cdot BR(H\to b\bar{b}) &\propto g^2_{HWW} \cdot BR(H\to b\bar{b}) \\ &\propto \Gamma(H\to WW) \cdot BR(H\to b\bar{b}) \end{split}$$

needed to learn absolute sizes of Higgs couplings

ILC measurements give model-independent determination of $\Gamma_{\rm H}$

	ILC500	ILC500 LumiUP
$\Delta\Gamma_{\rm H}$	3.8 %	1.8 %
$\Delta g_{HWW}/g_{HWW}$	0.81 %	0.42 %

> g_{HZZ} → absolute normalization of g_{HWW} > Γ_H → absolute normalization of couplings > g_{HWW}^2/g_{HZZ}^2 represents test of SU(2)

Top-Yukawa Coupling at 500 GeV

ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex]

- couples most strongly to Higgs sector
- > g_{Htt} could contain special effects
- should be measured model-independently

> at ILC directly accessible through

 $e^+e^- \rightarrow t\bar{t}H$ (with $H \rightarrow b\bar{b})$

> enhanced cross section at $\sqrt{s} = 500 \text{ GeV}$

▶ need full energy → close to production threshold

> at $\sqrt{s} = 550$ GeV better precision on g_{Htt}

- > by factor 4 enhanced cross section
- main backgrounds decrease

$\Delta {\rm g}_{\rm Htt}/{\rm g}_{\rm Htt}$	ILC500	ILC500 LumiUP	
500 GeV	18 %	6.3 %	
550 GeV	\sim 9 %	\sim 3 %	

increasing \sqrt{s} by 10%, precision improves by factor two for same integrated luminosity

Precision on Relevant Higgs Couplings

ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex]

 model-independent global fit to extract Higgs couplings and width

input to coupling fit:

 staged running and various production processes provide direct independent measurements of

 $\sigma \times BR(H \rightarrow XX)$

 independent of Higgs decay mode recoil mass measurement provides direct measurement of

 $\sigma(ZH)$

- most couplings reach required precision of 1 % or better during ILC program
- running at 550GeV instead of 500GeV gives g_{Htt} precision of 3 %
- precision matters: detect deviations due to extended Higgs sectors (SUSY, composite,...)

Precision Matters

references of figures still need to be added

- \succ for new physics searches important to get couplings precision into 1 % range
- > all Higgs properties predicted by SM
 - \rightarrow any deviation clear indication of BSM
 - \rightarrow largest deviations typically 5%-10% (BSM model dependent)
 - \rightarrow BSM models have different patterns of deviation from predicted couplings

Supersymmetry

Composite Higgs

Higgs couplings give proof wether Higgs is fundamental scalar or composite of more fundamental constituents

Higgs Self-Coupling Measurement at the ILC

precise measurement of SM Higgs potential via Higgs self-coupling

$$\mathsf{V}(\eta_{\mathsf{H}}) = \frac{1}{2}\mathsf{m}_{\mathsf{H}}^2\eta_{\mathsf{H}}^2 + \frac{\lambda \mathsf{v}\eta_{\mathsf{H}}^3}{4} + \frac{1}{4}\lambda \eta_{\mathsf{H}}^4$$

- \blacktriangleright existence of HHH coupling \rightarrow direct evidence of vacuum condensation
- one must observe double Higgs production
- very challenging measurement
 - ightarrow small production cross section, i.e. $\sigma({
 m ZHH}) pprox$ 0.2fb at 500GeV
 - \rightarrow many jets in final state
 - → interference terms due to irreducible diagrams

Higgs Self-Coupling Measurement at the ILC

ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex]

Existing full simulation analyses

@ 500 GeV

- > ZHH \rightarrow Z(bb)(bb) for m_H = 125 GeV
- > ZHH \rightarrow Z(bb)(WW) for m_H = 125 GeV

@ 1 TeV

- > $\nu \nu HH \rightarrow \nu \nu (bb)(bb)$ for $m_H = 125 \text{ GeV}$
- $ightarrow \nu \nu$ HH $ightarrow \nu \nu$ (bb)(WW) for m_H = 125 GeV

ongoing studies

there are several key points for potential improvement in analyses (kinematic fitting, jet-clustering, etc)

before luminosity upgrade precision of 77 % on Higgs self-coupling

after full ILC program precision of 27% can be achieved

possible energy upgrade to 1 TeV could improve precision to 10% or better

Sensitivity of Higgs self-coupling λ in BSM

references of figures still need to be added

- \succ electroweak baryogenesis (THDM) large deviation expected only in λ ($\lambda > 1.2 \cdot \lambda_{SM}$)
- such physics scenario difficult to be observed at LHC
- ▶ at ILC possible at 500 GeV with ZHH

example: $\lambda = 2 \cdot \lambda_{SM} > \sigma_{ZHH}$ enhanced by 60%

- interference term reduced
- $\succ \Delta \lambda / \lambda$ improved by factor of 2

200

 $180 \cdot$

 $160 \cdot$

Region where EW baryogenesis is

DES

expected

1st order EWP

Summary

 \rightarrow \rightarrow \rightarrow \rightarrow

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 13/13

BACKUP SLIDES

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 14/13

Summary Table - Projected Precisions for H-20

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 15/13

Summary Table - Input Precisions to Higgs Coupling Fit

Claude Fabienne Dürig $~\mid$ Higgs program at the ILC \mid EPS-HEP Vienna, July 22-29 2015 \mid 16/13

Running Scenarios - Summary Table

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 17/13

Advantageous of ee Linear Collider

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 18/13

Higgs Boson Production rates

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 19/13

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 20/13

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 21/13

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 22/13

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 23/13

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 24/13

 σ_{ZH}

$$\sigma_{ZH} \times BR(H \to invisible)$$

 $\sigma_{ZH} \times BR(H \to VV), \sigma_{\nu} \times BR(H \to VV)$

 $\sigma_{ZH} \times BR(H \to bb/cc), \sigma_{\nu} \times BR(H \to bb/cc)$

 $\sigma_{ZH} \times BR(H \to \tau \tau/\mu \mu), \sigma_{\nu} \times BR(H \to \tau \tau/\mu \mu)$

 $\sigma_{ZH} \times BR(H \to \gamma \gamma/gg), \sigma_{\nu} \times BR(H \to \gamma \gamma/gg)$

 $\sigma_{ttH} \times BR(H \to bb)$

$$\sigma_{ZHH} \times BR^2(H \to bb), \sigma_{\nu\nu HH} \times BR^2(H \to bb)$$

Claude Fabienne Dürig | Higgs program at the ILC | EPS-HEP Vienna, July 22-29 2015 | 25/13

Global fit - Model-Independent Results

>staged running and various production processes provide many independent measurements $Y_i = \sigma \times BR(H \to XX)$, with error ΔY_i

>predicted values of measurements Y'_i can always be parametrized by couplings g_{HZZ} , g_{HWW} , g_{Htt} and Γ_H

>additional recoil mass measurement provide absolute cross section measurement of σ_{ZH} , independent of Higgs decay mode, all modes at iLC

combined all measurements to extract 9 couplings (hzz, hww, hbb, hcc, hgg,

htautau,hmumu,htt,hgamma) and width Γ_H

>model-independent global fit by constructing χ^2

$$\chi^{2} = \sum_{i=1}^{i=N} \left(\frac{Y_{i} - Y_{i}'}{\Delta Y_{i}} \right)^{2}$$

estimated uncertainties from the ILC for a model-independent fit to the Higgs couplings in which all Higgs couplings, including couplings to invisible and exotic modes are separately taken as free parameters.

> in these model-independent determinations, most couplings reach the required precision of 1 percent or better in the course of the ILC program.

➤as noted before, running the ILC at 550GeV rather than 500GeV would give precisions of 9pc and 3pc in the two entries for the tty coupling

>one important Higgs coupling not discussed so far.

time development of available Higgs coupling studies inter-

preted in fully model-indecent fit

Sensitivity of Higgs self-coupling λ in BSM

BSM scenario: improved accuracy expected (i.e. electroweak baryogenesis: $\lambda > \lambda_{SM}$)

 $\lambda < \lambda_{\mathsf{SM}}
ightarrow
u
u \mathsf{HH}$ at 1 TeV

example: $\lambda = 0.5 \cdot \lambda_{SM}$

$\lambda > \lambda_{\mathsf{SM}} o \mathsf{ZHH}$ at 500 GeV

example: $\lambda = 2 \cdot \lambda_{SM}$

- > σ_{ZHH} enhanced by 60%
- ▶ sensitivity factor reduced (1.73 → 1.08)
- > $\Delta\lambda/\lambda$ improved by factor of 2

both cases:

- > λ can be measured to 14% precision
- $> 7\sigma$ discovery

Higgs Self-Coupling Analyses at ILC

Existing DBD full simulation analyses

studies performed with low-p_T $\gamma \gamma \rightarrow$ hadrons beam background without low- $p_{T} \gamma \gamma \rightarrow$ hadrons beam background

@ 500 GeV

@ 1 TeV

- > ZHH \rightarrow Z(bb)(bb) for m_H = 125 GeV
- $\succ vvHH \rightarrow vv(bb)(bb)$ for $m_H = 125$ GeV
- > ZHH \rightarrow Z(bb)(WW) for m_H = 125 GeV > $\gamma\gamma$ HH $\rightarrow\gamma\gamma$ (bb)(WW) for m_H = 125 GeV

ILC white paper: Higgs self-coupling projections

(full simulation w/ $m_H = 120$ GeV, extrapolated to $m_H = 125$ GeV)

		5	00 GeV	500 GeV+1 TeV			
	Scenario	А	В	С	А	В	С
	Baseline	104%	83%	66%	26%	21%	17%
	LumiUP	58%	46%	37%	16%	13%	10%
	500 GeV: 500 (1600)fb ⁻¹			P(e ⁺ e ⁻)=(0.3,-0.8)			
1 TeV: 1000 (2500)fb ⁻¹			P(e ⁺ e ⁻)=(0.2,-0.8)				

Scenario A: HH → bbbb ✓ Scenario B: adding HH \rightarrow bbWW \checkmark , expect 20% relative improvement Scenario C: analysis improvement (jet-clustering, kinematic fit, flavor tagging, matrix element method, etc.), expect 20%

relative improvement (ongoing)

