Test beam analysis status

LCTPC-Pixel Meeting 23.07.2015

Michael Lupberger

Preanalysis

Data cleaning finished

Data quality control finished

- → bit shifts mostly of dead pixel
- → some very few events with bit shifts located on single octoboards Reject complete events

First part of analysis: Drift time

Run 060-072: B=0T, V_d=130 v/cm

Drift velocities, 40 MHz readout frequency

Run 051-059: B=0T, V_d=230 v/cm

Run 076-089: B=1T, V_d=230 v/cm

Run 090-105: B=0T, V_d=230 v/cm

Run 121-135: B=1T, V_d=130 v/cm

Drift velocities, 40 MHz readout frequency

Summary

Run	<i>B</i> [T]	$E_{drift}[V/cm]$	Stage offset[mm]	$v_{d,meas}$ [mm/ μ s]	$v_{d,sim}[\text{mm/}\mu\text{s}]$
51-59	0	230	-152.5 ± 2.0	76.7 ± 0.6	76.50 ± 0.02
61-72	0	130	-151.2 ± 1.6	56.07 ± 0.27	56.42 ± 0.01
76-89	1	230	-153.7 ± 1.8	76.9 ± 0.5	76.39 ± 0.01
90-105	0	230	-153.3 ± 1.3	77.1 ± 0.4	76.38 ± 0.01
121-135	1	130	-151.1 ± 1.3	52.49 ± 0.24	53.23 ± 0.01

Drift time from cathode signal: all systematically too small

Cathode signal Brezis method:

Center of Error function

Discussion with Felix:

What we see is the edge of the diffused signal of a gaus from the cathode->
Take mean of gaus
=top of top/90% of error function

Convert TrackerData to hits (gear information)

Track finder: HoughTransformNormal (M. Rogowski)

Track fitter: LinearRegression

Reassign hits afterwards

Convert TrackerData to hits (gear information)

Track finder: HoughTransformNormal (M. Rogowski)

Track fitter: LinearRegression

Reassign hits afterwards

Analysis of track/hits on track parameters (after cuts):...

Residuals, Residuals mean along y axis

GeometricMean (resolution)

Track parameters

Hits distributions

Convert TrackerData to hits (gear information)

Track finder: HoughTransformNormal (M. Rogowski)

Track fitter: LinearRegression

Reassign hits afterwards

Analysis of track/hits on track parameters (after cuts):

Residuals, Residuals mean along y axis **GeometricMean (resolution)**

Track parameters
Hits distributions

N-fit for geometric mean resolution

1200

1000

800

600

400

200

histoGeoN

Convert TrackerData to hits (gear information)

Track finder: HoughTransformNormal (M. Rogowski)

Track fitter: LinearRegression

Reassign hits afterwards

Analysis of track/hits on track parameters (after cuts):

Residuals, Residuals mean along y axis GeometricMean (resolution)

Track parameters

Hits distributions

Alignment correction

Gear file from Alex:

- → Precise intra module
- → module to module: estimate from CAD

Look at mean residuals along track

Systematic effect → shift/rotate modules

Best result: rotation of top and bottom module by 0.9°

residualsXY_vs_yphi

Alignment correction

Gear file from Alex:

- → Precise intra module
- → module to module: estimate from CAD
- → estimated guess alignment

Look at mean residuals along track → **field distortions become visible**.

Problem: Beam not on same position on all chips → complete correction complicated (map ?) Need??? Track will undergo many field distortions in all directions

Field distortions correction

Gear file from Alex:

- → Precise intra module
- → module to module: estimate from CAD
- → estimated guess alignment

Use M. Rogowskis field distortions correction to shift means, see how good our detector would be. (will not work 100% because beam on different positions on chips.)

Magboltz simulation: D_L = 224+-9

Magboltz simulation: $D_T = 324+-12$

dE/dx

New Processor:

Go along track, count number of electrons in interval

(e.g. 1 mm track length)

Plot $n/\Delta x$ along track

So far: do not take care of chip edges.

Chips become visible Clearly many entries at dE/dx =0 even on chips **New Processor:**

Go along track, count number of electrons in interval

(e.g. 1 mm track length)

Plot $n/\Delta x$ along track

So far: do not take care of chip edges.

New Processor:

Go along track, count number of HitsOnTrack in interval

(e.g. 1 mm track length)

Plot $n/\Delta x$ along track

So far: do not take care of chip edges.

Look at a single chip: projection on dE/dx axis of chip center (10mm)

ProjectionY of binx=[509,518] [x=208.0..218.0]

New track finding processor, as existing ones not good/unusable: Circle finder (see last meetings)

 \rightarrow best of curved track finder for pixelised readout (compared to RowbasedFHT, WindowedHT)

→ in preliminary state: find almost straight tracks only. no optimisation

New track finding processor, as existing ones not good/unusable: Circle finder (see last meetings)

→ best of curved track finder for pixelised readout (compared to

RowbasedFHT, WindowedHT)

- → double track and delta finding not exploited
- → in preliminary state
- → find almost straight tracks only
- → no optimisation

Fitter: SimpleHelix, 3D ReassignHits

Field distortions

Curved Track Reco Problems: Finder

- too much curved (R<2m) track finding not jet implemented

Curved Tracks in B-Field

Curved Track Reco Problems: Fitter

800

z [mm]

500

300

600

-100

-200

100

Curved Tracks in B-Field

Curved Track Reco Problems: Fitter

Curved Tracks in B-Field

Ongoing:

Reco and analysis of z-scan at 80 MHz

- → Z resolution might be interesting
- → XY resolution as good? Possibly not: ExB effects

Ongoing: Reco and analysis of z-scan at 80 MHz

- → Z resolution might be interesting
- → XY resolution as good? Possibly not: ExB effects

