Higgs Recoil Mass Study using Z→II at ECM=250, 350 GeV and 500 GeV ILC

> ILC Physics Meeting July 31, 2015 Jacqueline Yan (KEK)

OUTLINE

 Improvement after implementing visible energy cut (separate into visible and invisible Higgs decay)
 suppress the major BG || ν ν

◆ study of Higgs decay mode dependence using high statistics sample generated for EACH DECAY MODE previously at 250 GeV this time also at 350 GeV → improved lepton finder shows effect

Lepton Pair Candidate Selection

opposite +/- 1 charge

- E_cluster / P_total : < 0.5 (μ) / > 0.9 (e)
- isolation (small cone energy)

ightarrow removes nearly all 4f_WW_sl BG

- Minv closest to Z mass
- |D0/δD0| < 5

Final Selection

•73 < GeV < M_inv < 120 GeV

• 10 GeV < pt_dl < 140 GeV

$$\left| \overrightarrow{P_{t,sum}} \right|^{\circ} \left| \overrightarrow{P_{t,g}} + \overrightarrow{P_{t,dl}} \right| > 10 \text{ GeV}$$

- |cos(θ_missing)| < 0.98
- |cos(θ_Z)| < 0.9
 100 GeV < Mrecoil < 160 GeV

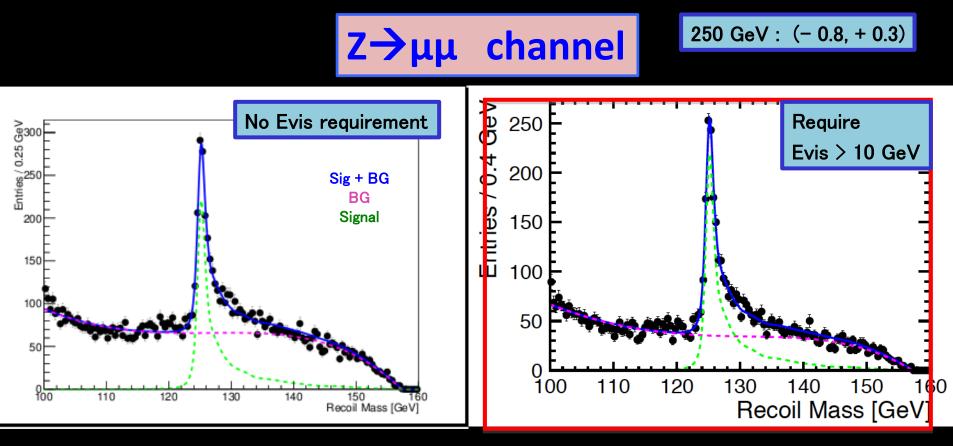
• L kelihood cut

Example of ECM=350 GeV,

Data selections designed to guarantee Higgs decay mode independence

Optimized in terms of signal significance and xsec measurement precision

definition


- M_inv : invariant mass of 2 muons
- pt_dl : pt of reconstructed lepton pair
- pt,γ : pt of most energetic photon
- θ_missing = polar angle of undetected particles
- $\theta_Z = Z$ production angle

- Effective for cutting $\mu \mu$ / ee BG
- Use info of most energetic photon $(pt_{\gamma}, cone energy)$ meanwhile minimize bias on signal

red box:

key improvements w.r.t. previous studies

similar methods applied to all ECM and polarizations

after requiring Evis (visible energy) > 10 GeV i.e. only visible Higgs Decay

signal peak is apparently sharper

0.25

• II $\nu \ \nu$ (ZZWWMiix) BG reduced by a factor of 5

In order to maintain model independence, xsec errors need to be convoluted with results from invisible Higgs decay analysis (corresponding to BSM) https://agenda.linearcollider.org/event/6557/session/12/contribution/129/material/slides/0.pdf the contribution should be small

	250 GeV			350 GeV			500 GeV		
			improvem			improvem			improvem
	new	old	ent	new	old	ent	new	old	ent
xsecL	2.45%	2.74%	10.58%	3.02%	3.21%	5.92%	4.64%	5.01%	7.39%
xsecR	2.83%	<mark>2.93%</mark>	3.41%	3.43%	3.55%	3.38%	5.17%	5.33%	3.00%
massL	33.8	37.9	10.82%	86.5	96.5	10.36%	456	448	-1.79%
massR	38.2	38.4	0.52%	97.5	105	7.14%	540	536	- 0.75%
xsecZmmL	2.98%	3.35%	11.04%	3.68%	3.90%	5.64%	6.09%	6.50%	6.31%
xsecZmmR	3.45%	3.57%	3.36%	4.17%	4.31%	3.25%	6.99%	7.27%	3.85%
xsecZeeL	4.30%	4.76%	9.66%	5.26%	5.63%	6.57%	7.25%	7.86%	7.76%
xsecZeeR	4.96%	5.14%	3.50%	6.04%	6.26%	3.51%	7.67%	7.86%	2.42%
massZmmL	36	40.4	10.89%	90.2	101	10.69%	479	468	-2.35%
massZmmR	40.5	40.5	0.00%	104	112	7.14%	580	572	-1.40%
massZeeL	97.4	109	10.64%	306	327	6.42%	1500	1540	2.60%
massZeeR	116	121	4.13%	281	296	5.07%	1480	1530	3.27%

From Junping-san's talk at ALCW2015

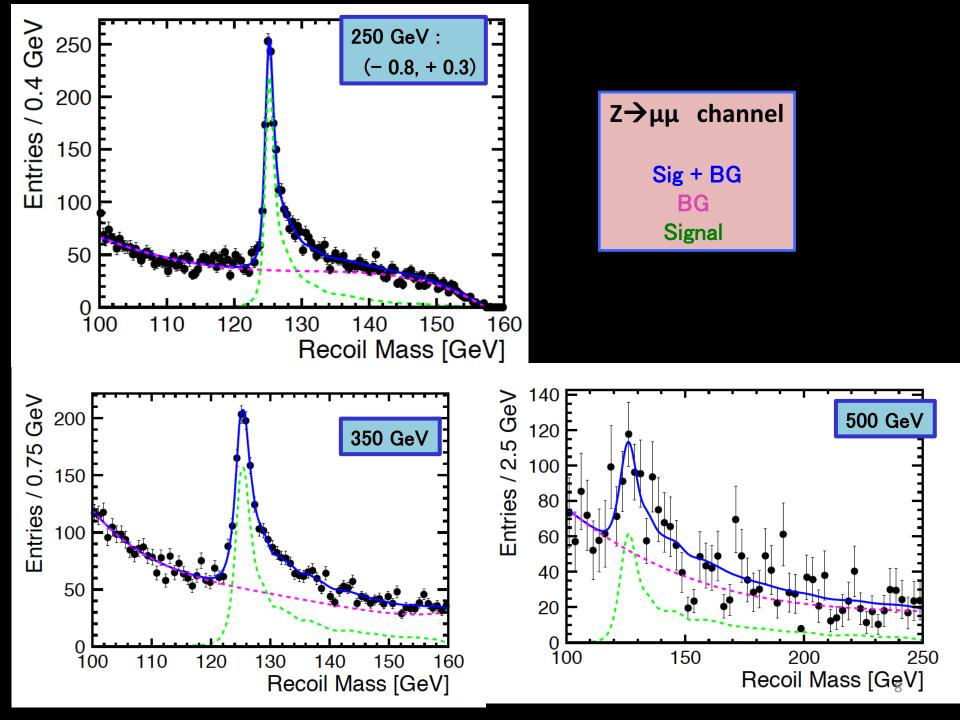
BR(inv) upper limit	P(e-,e+) =(-0.8,+0.3)	P(e-,e+) =(+0.8,-0.3)	
250 fb ⁻¹ @ 250 GeV	0.86%	0.61%	
330 fb ⁻¹ @ 350 GeV	1.23%	1.10%	
500 fb ⁻¹ @ 500 GeV	2.39%	1.73%	

Combined Higgs visible and invisible decay results

	250 GeV	350 GeV	500 GeV
xsecL	2.49%	3.08%	4.79%
xsecR	2.85%	3.47%	5.24%
massL [MeV]	33.8	86.5	456
massR [MeV]	38.2	97.5	540

250 GeV :

> 10% improvement in precision of both xsec and mass Now, xsec precision is better than extrapolated result in TDR xsec and mass scaled to H20 are comparable with the physics case paper


350 GeV:

> 10% improvement in mass precision

About 6% improvement in xsec

500 GeV: About 7% improvement in xsec precision Mass is not improved Anyways we don't depend on 500 GeV for precise mass measurement And mass measurement doesn't need to be model independent

250 GeV shows most significant improvement because vvll BG occupies > 30% of residual BG, whereas < 10% for 350 or 500 GeV

Interesting point that for Zee channel, dilepton processor efficiency is lower for higher ECM w.r.t. 250 GeV due to ZZ fusion process (e.g. 350 GeV is 10% less than 250 GeV)

c.f. Efficiency for Zmm is nearly independent of ECM

Until now Higgs decay mode bias due to both signal selection AND BG rejection have been studied / suppressed.

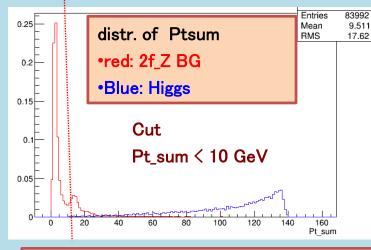
Here are the results proving Higgs mode independence

Higgs Decay Mode Bias

Problem#1 isolated lepton finder efficiency is lower for H→ gg, ww due to more overlap of jets from Higgs decay *already resolved thanks to new weights trained by Junping-san* used H→gg mode to train weight for TMVA (before: qqqq Now: gg mode suffers almost no bias, consistent efficiency with bb, cc

Problem#2

"wrong lepton pairing" for $H \rightarrow zz$, ww

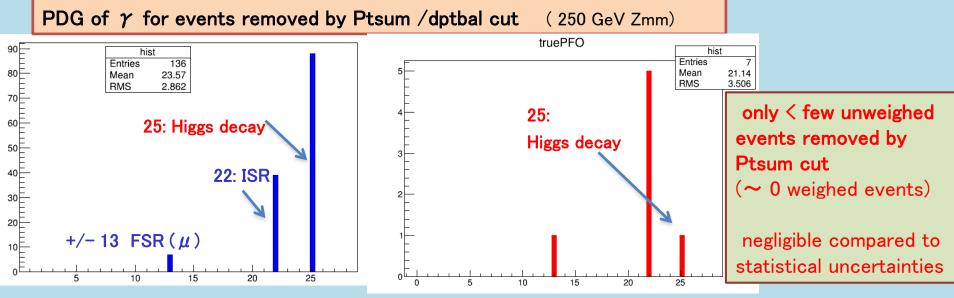

•Even if leptons are from a non-prompt Z, they might satisfy Minv, but not Mrec leads to low efficiency due to cuts on Invariant mass and recoil mass in analysis stage

IMPROVEMENT: For Zmm channel : select best pair by minimizing chi² based on Mrec and Minv (c.f. before: select pair with Minv closest to Z mass)

Problem#3 Cos(θmiss) cut and Ptsum cut bias H \rightarrow γγ 、 ττ (tolerable ?) •These **cannot be sacrificed** due to xsec precision and negligible after weigh by BR

Prevention of signal bias i.e. Higgs decay mode dependence

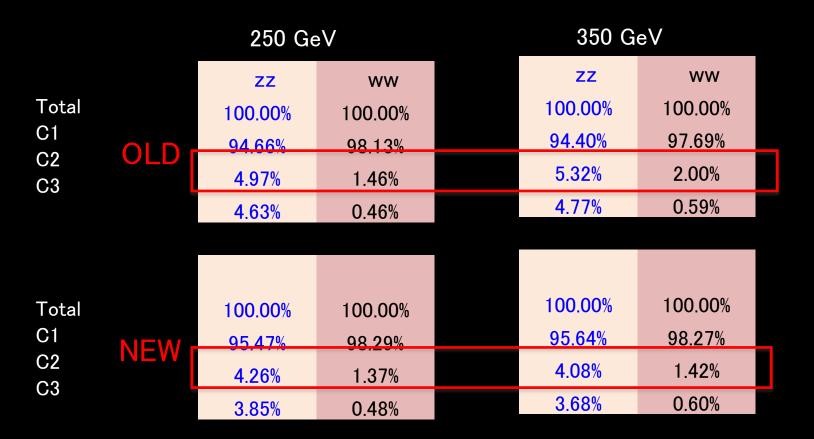
• the "traditional" dptbal (= |Pt,dl | - |Pt, γ |) cut for removing 2f BG (γ back-to back w.r.t. di-lepton) caused signal bias (esp. H $\rightarrow \tau \tau$, $\gamma \gamma$)



NEW #1 isolated photon finder: γ we look at have small cone energy) not from Higgs decay

NEW #2 Now use (instead of dptbal)

$$\overrightarrow{P}_{t,sum} \circ \left| \overrightarrow{P}_{t,g} + \overrightarrow{P}_{t,dl} \right|$$


vector direction info singles out back to back events

 $\sim\!100~$ Higgs decay related γ events removed by dptbal cut !!

need more careful study of Higgs decay mode bias using high stat sample

lepton pairing mistake is reduced for ZZ, WW modes without additional bias on other modes

C1: correct

C2: two real leptons exist, but at least one wrong lepton

Pairing mistake

C3: both leptons wrong

• 250 GeV: No apparent improvement on final efficiency (after all other cuts)

350 GeV: improvement shows up in final efficiency !!

(rise by 0.5 - 1%, statistically significant)

H→zz mode BR is very small , so overall 4.3% x 2% ~ 0.09 % H→WW* has large BR !! → is the remaining bias this a worry ?

		350 GeV , OLD					
Eff.	(%) bb	cc	99	tt	WW	ZZ	aa
Cut0	: 93.63 +/-0.078	93.84 +/-0.076	93.31 +/- 0.08	94.1 +/-0.076	94.07 +/-0.075	94.13 +/-0.075	93.94 +/-0.076
Cut1	: 93.63 +/-0.078	93.84 +/-0.076	93.31 +/- 0.08	94.09 +/-0.076	94.03 +/-0.076	93.93 +/-0.076	93.93 +/-0.076
Cut2	: 93.17 +/-0.081	93.36 +/-0.079	92.86 +/-0.082	93.49 +/- 0.08	93.12 +/-0.081	92.9 +/-0.082	92.95 +/-0.081
Cut3	: 91.09 +/-0.091	91.35 +/-0.089	90.8 +/-0.092	91.26 +/-0.091	90.8 +/-0.092	90.46 +/-0.094	90.72 +/-0.092
Cut4	: 90.93 +/-0.092	91.19 +/- 0.09	90.68 +/-0.093	91.09 +/-0.092	90.66 +/-0.093	90.33 +/-0.094	90.62 +/-0.092
Cut5	: 90.89 +/-0.092	91.16 +/- 0.09	90.65 +/-0.093	90.93 +/-0.093	90.61 +/-0.093	90.27 +/-0.095	88.38 +/- 0.1
Cut6	: 87.74 +/- 0.1	88.07 +/- 0.1	87.54 +/- 0.11	89.84 +/-0.098	88.16 +/- 0.1	87.61 +/- 0.11	65.6 +/- 0.15
Cut7	: 82.94 +/- 0.12	83.18 +/- 0.12	82.86 +/- 0.12	84.6 +/- 0.12	83.04 +/- 0.12	82.78 +/- 0.12	62.33 +/- 0.15
Cut8	: 68.01 +/- 0.15	68.24 +/- 0.15	67.98 +/- 0.15	68.5 +/- 0.15	67.08 +/- 0.15	65.2 +/- 0.15	56.9 +/- 0.16
Cut9	: 68.01 +/- 0.15	68.24 +/- 0.15	67.98 +/- 0.15	68.35 +/- 0.15	67.06 +/- 0.15	62.6 +/- 0.15	56.9 +/- 0.16
Cut10	0: 55.04 +/- 0.16	55.21 +/- 0.16	55.12 +/- 0.16	55.03 +/- 0.16	54.14 +/- 0.16	50.17 +/- 0.16	48.88 +/- 0.16

Cut8 is final cut before fitting

Eff.	(%)		bb 350	GeV; NEW	99	tt	WW	zz	aa
Cut0	:	93.63	+/-0.078	93.84 +/-0.076	93.31 +/- 0.08	94.1 +/-0.076	94.07 +/-0.075	94.13 +/-0.075	93.94 +/-0.076
Cut1	:	93.63	+/-0.078	93.84 +/-0.076	93.31 +/- 0.08	94.09 +/-0.076	94.03 +/-0.076	93.93 +/-0.076	93.93 +/-0.076
Cut2	:	93.17	+/-0.081	93.36 +/-0.079	92.86 +/-0.082	93.51 +/- 0.08	93.13 +/-0.081	92.89 +/-0.082	92.95 +/-0.081
Cut3	:	91.08	+/-0.091	91.35 +/-0.089	90.8 +/-0.092	91.2 +/-0.092	90.63 +/-0.093	90.3 +/-0.095	90.72 +/-0.092
Cut4	:	90.92	+/-0.092	91.19 +/- 0.09	90.68 +/-0.093	91.02 +/-0.093	90.49 +/-0.094	90.16 +/-0.095	90.62 +/-0.092
Cut5	:	90.89	+/-0.092	91.16 +/- 0.09	90.65 +/-0.093	90.87 +/-0.093	90.44 +/-0.094	90.11 +/-0.095	88.38 +/- 0.1
Cut6	:	87.73	+/- 0.1	88.07 +/- 0.1	87.54 +/- 0.11	89.77 +/-0.098	87.99 +/- 0.1	87.37 +/- 0.11	65.6 +/- 0.15
Cut7	:	82.93	+/- 0.12	83.18 +/- 0.12	82.86 +/- 0.12	84.53 +/- 0.12	82.91 +/- 0.12	82.54 +/- 0.12	62.33 +/- 0.15
Cut8	:	68.02	+/- 0.15	68.24 +/- 0.15	67.98 +/- 0.15	68.67 +/- 0.15	67.71 +/- 0.15	66.13 +/- 0.15	56.9 +/- 0.16
Cut9	:	68.02	+/- 0.15	68.24 +/- 0.15	67.98 +/- 0.15	68.52 +/- 0.15	67.69 +/- 0.15	63.53 +/- 0.15	56.9 +/- 0.16
Cut10	:	55.04	+/- 0.16	55.22 +/- 0.16	55.12 +/- 0.16	55.2 +/- 0.16	54.67 +/- 0.16	51.01 +/- 0.16	48.88 +/- 0.16

Proved that after weighed by SM BR, mode bias is negligible.

bb cc gg	eff(final) 82.58% 82.59% 82.50%	dev*BR 0.170% 0.008% 0.018%		bb cc gg	eff(final) 78.14% 78.14% 77.69%	dev*BR 0.237% 0.011% −0.003%			cy values I by SM BR
tt	82.02%	-0.017%		tt	77.32%	-0.026%			BR
ww	81.98%	-0.066%	Zmm	ww	77.44%	-0.063%	Zee	bb	57.8%
ZZ	82.02%	-0.007%	250 GeV	zz	75.74%	-0.053%	250 GeV	сс	2.7%
aa	68.38%	-0.032%		aa	64.69%	-0.030%		gg	8.6%
	avg eff:	82.29%			avg eff:	77.73%		tt	6.4%
								ww	21.6%
	eff(final)	dev*BR			eff(final)	dev * BR		ZZ	2.7%
bb	68.02%	0.092%		bb	47.02%	0.225%	_	aa	0.2%
сс	68.24%	0.010%	Zmm	сс	46.92%	0.008%	Zee		
gg	67.98%	0.010%	350 GeV	gg	46.77%	0.012%	350 GeV		
tt	68.67%	0.052%		tt	46.98%	0.022%		Note !	
ww	67.71%	-0.032%		ww	45.88%	-0.162%		Overall eff dragged by	
zz	66.13%	-0.046%		zz	44.79%	-0.049%			
aa	56.90%	-0.025%		aa	47.02%	-0.015%		Zee suffe	
	avg eff	67.86 %			avg eff	46.63%		from mist	akes

- upper limit on syst error on xsec from mode bias is
- Zmm : 250 GeV: 0.17% 350 GeV: 0.09%
- Zee: 250 GeV: 0.24% 350 GeV: 0.23%

well below the smallest xsec statistical error we expect by end of H20 run (0.8%, scaled from the 2.6% in TDR)

Higgs recoil study using $e+e- \rightarrow ZH \rightarrow I+I-H$ (I = μ / e)

@ ECM = 250 , 350 , 500 GeV

Summary studied impact of ECM and polarization on model – independent measurement of ZH xsec

< best-so-far Preliminary results >	(both leptonic channels combined)
-------------------------------------	-----------------------------------

	250 GeV	350 GeV	500 GeV	
xsecL	2.49%	3.08%	4.79%	Model independent
xsecR	2.85%	3.47%	5.24%	·
massL (MeV)	33.8	86.5	456	Combined Higgs visible and
massR (MeV)	38.2	97.5	540	invisible decay

xsec precision :

- ECM= 350 GeV worse by 24 % w.r.t. 250 GeV
- right pol worse by 10-15 % w.r.t. left pol.

Higgs mass precision:

ECM=350 GeV worse by factor of < 3 w.r.t. ECM = 250 GeV

• right pol worse by 10-15 % w.r.t. left pol.

Note : extrapolated results (TDR) for 250 GeV : xsec error 2.6%, $\Delta M = 32$ MeV methods are slightly different, hard to directly compare

- Higgs decay mode dependence has been investigated in depth
- systematic error due to mode bias is far below best achievable xsec precision (most likely for any ECM)

Next Steps: Trying to get started on Higgs hadronic recoil

• as well as the Higgs recoil paper in progress

Higgs recoil Paper in progress !!

work on it during KEKcc shutdown

For co-authors, lets review first draft at end of August !!

Leptonic Higgs Recoil Analysis at the ILC

July 28, 2015

Abstract

The expected measurement precision of fundamental Higgs boson properties at the ILC has been carried out in a detailed study based on full simulation of the ILD detector as proposed in the Technical Design Report[1]. The absolute cross section of the Higgs transformation of the Higgs transformation of the Higgs transformation of the Higgs recoil mass provides a window into physics beyond the standard model. Here, the Higgs is produced together with a Z boson which decays into a well measurable dilepton system. This paper shows the results for $Z \to \mu^+ \mu^-$, $Z \to e^+e^-$, and the combined results of the two leptonic channels. in accord with the expected schedule of operation of the accelerator. Analysis is carried out for three center of mass scenarios 250, 350, and 500 GeV, and two beam polarization scenarios $(e^+e^-) = (-0.8, +0.3)$ and (+0.8, -0.3). These impact the decision of ILC run scenario]. Methods of signal selection are optimized to achieve the highest precision in ZH cross section while maintaining Higgs decay mode independence. At 250 GeV, which best detector resolution is obtainable, σ_{ZH} have been shown for 350 GeV. Feasibility have also been shown at 500 CeV, which provides reach for new physics.

1 Introduction

1.1 The Role of the ILC in Particle Physics

The International Linear Collider (ILC) [1] is a proposed e^+e^- collider with a center-of-mass energy rangin from 250 to 500 GeV, with possibility of an upgrade to 1 TeV.

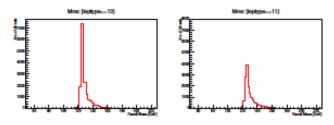
The precision measurements of the Higgs couplings are an integral part of its physics program.

I. First, the energy deposition in the ECAL (E_{ECAL}), the total energy deposit in both ECAL and HCAL ($E_{CAL,bst}$), and the measured track momentum (P_{lot}) are compared for each final state particle. The basic idea here is that an electron deposits nearly all its energy in the ECAL while a muon in the ILC energy range passes both the ECAL and HCAL as a minimal ionizing particle. Then, prompt decay is guaranteed by requirements on the vertex parameters D_0 and z_0 , with respect to their measurement uncertainties. This serves to suppress leptons from τ decay. The observables and cut values are summarised in Table 3.3.

7

2. Furthermore, the leptons are required to be isolated so as to prevent picking up leptons from jets either from Higgs decay or WW BG processes. This criteria are relatively high P_{lot}, and emptyness surrounding the lepton. The basic idea is to require the energy inside a cone surrounding the lepton to be below a certain value. The isolation requirement is based on a TMVA based double cone method with neural net output [].

	μD	e ID
momentum and	$P_{tot} > 5$ GeV	$P_{\text{fot}} > 5 \text{ GeV}$
energy deposit		$0.5 < E_{CAL,tot}/P_{tot} < 1.3$
	$E_{\text{yoks}} < 1.2 \text{ GeV}$	$E_{ECAL}/E_{CAL,tot} > 0.9$
impact parameter	$ D_0/\delta D_0 > 5$	$ D_0/\delta D_0 > 50$
	$ z_0/\delta z_0 > 5$	$ z_0/\delta z_0 > 5$



3.2.2 Selection of Best Lepton Pair

It is necessary to distinguish the dilepton system as produced by the Z decay in the Higgs-strahlung process from final state lepton pairs originating from BG processes or Higgs decay. For the Higgs-strahlung process, neglecting detector resolution and radiative effects, the M_{twv} of the dilepton system and M_{rac} should be equal to the Z mass $M_Z \simeq 91.187$ GeV the Higgs mass $m_H - 125$ GeV (in this study), respectively. The best lepton pairs with opposite charges are chosen based on the following criteria.

From the the distributions in Figures 3.2 and 3.1, loose precuts on M_{true} and M_{rec} are implemented as $|M_{true} - M_Z| < 40(60)$ GeV for μ (e) and 100 GeV $< M_{rec} < 300$ GeV, respectively. Next, for the $\mu^+\mu^-$ H channel, the lepton pair that minimizes a χ^2 function based on both their M_{true} and M_{rec} is selected. The rational here is that even though the pair have M_{true} close to M_Z , it may come from a Z from Higgs decay, in which case its M_{rec} tends to be deviated from Higgs mass. For the e⁺e⁻H channel, the lepton pair that has M_{true} closest to M_Z is selected. The χ^2 minimization method is not efficient in this case due to the additional effect from bremsstrahlung. Figure 3.3 compares the distributions of M_{true} and M_{rec} between "correct" and "wrong" pairs for the case of $E_{CM} - 250$ GeV. This method os lepton pairing is important for preventing bias on Higgs decay mode dependence, as will be discussed in Sec. ().

The efficiency of the isolated dilepton finder is () for $\mu^+\mu^-\mu$ and () for $e^+e^-\mu$. Here, efficiency is defined as the reconstructed number over the generated number for each lepton type.

BACKUP

Performance of data selection

in fitting range 100-160 GeV

(-0.8,+0.3)		significance	Nsig	Nbg
250GeV	Zmm	18.3	1879	8692
	Zee	14.4	1502	9394
350GeV	Zmm	17.7	1462	5332
	Zee	14.1	1156	5597
500GeV	Zmm	11.1	626	2572
	Zee	8.7	439	2087
(+0.8,-0.3)		significance	Nsig	Nbg
250GeV	Zmm	19.7	1264	2834
	Zee	12.8	1096	6231
350GeV	Zmm	17	1002	2486
	Zee	12.7	602	1627
500GeV	Zmm	9.9	414	1339
	Zee	8.9	325	1003

- In general, significance is 250 > 350 > 500 GeV, Zmm > Zee
- right hand polarization: case by case:

(lower BG, but also smaller signal statistics)

0.8,+0.3)		xsec err	mass err [MeV]
250GeV	Zmm	3.35%	40.4
	Zee	4.76%	109
	Total	2.74%	37.9
350GeV	Zmm	3.90%	101
	Zee	5.63%	327
	Total	3.21%	96.5
500GeV	Zmm	6.50%	468
	Zee	7.86%	1540
	Total	5.01%	448

Mass error

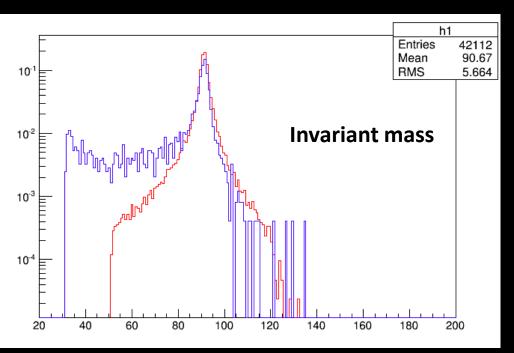
•350 GeV is worse by factor of slightly less than 3 w.r.t. 250 GeV

•Zee is worse by a factor of 2 – 3 w.r.t. Zmm

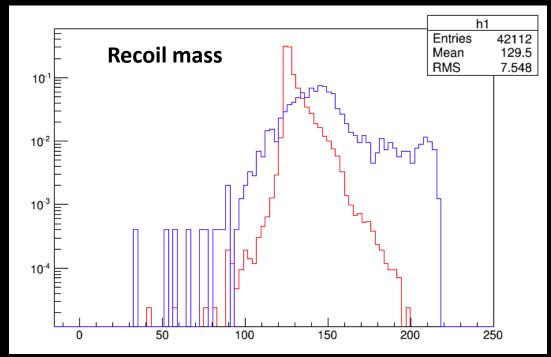
•Systematic error of fitted recoil mass is negligible (< few MeV for 250, 350 GeV)

500 GeV : fitted over wide range

xsec error almost same as past results using GPET


Statistical error study results $Z \rightarrow \mu \mu$ and $Z \rightarrow ee$ combined

<u>xsec error</u>


- 350 GeV is 17 % worse w.r.t. 250 GeV
- 500 GeV is much worse
- Zee is worse by > 40% w.r.t. Zmm

right hand pol is worse by 5 – 10 % w.r.t.
left hand

(+0.8,-0.3)		xsec err	mass err [MeV]
250GeV	Zmm	3.57%	40.5
	Zee	5.14%	121
	Total	2.93%	38.4
350GeV	Zmm	4.31%	112
	Zee	6.26%	296
	Total	3.55%	105
500GeV	Zmm	7.27%	572
	Zee	7.86%	1530
	Total	5.33%	536 20

Blue : wrong pair Red: right pair

Efficiency of each Higgs decay mode (after each cut)

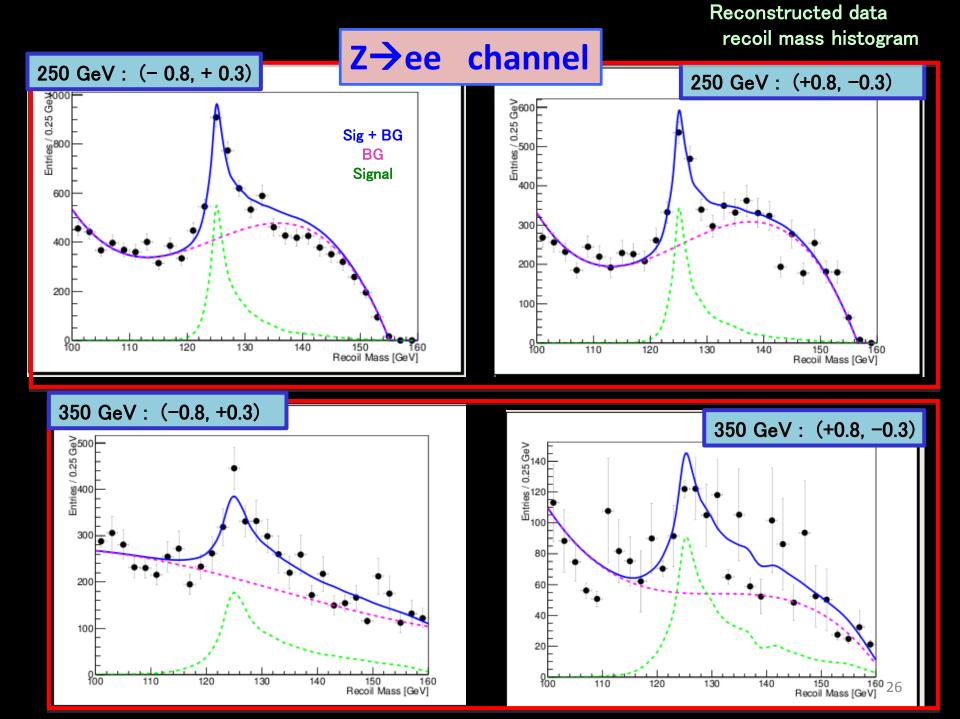
Resolved problem of poor isolation in lepton finder

Weights trained using $H \rightarrow qqqq$

Eff. (%)	bb	cc	99	tt	ww	ZZ	88		
Cut0 :	92.41 +/-0.086	92.43 +/-0.087	91.66 +/- 0.09	93.27 +/-0.081	92.67 +/-0.083	93.01 +/-0.082	92.84 +/- 0.07		
Cut1 :	92.41 +/-0.086	92.43 +/-0.087	91.66 +/- 0.09	93.24 +/-0.081	92.64 +/-0.083	92.77 +/-0.083	92.83 +/- 0.07		
Cut2 :	90.85 +/-0.094	90.84 +/-0.095	90.05 +/-0.098	91.37 +/-0.091	90.56 +/-0.093	90.6 +/-0.094	90.48 +/- 0.08		
Cut3 :	88.92 +/- 0.1	89.07 +/- 0.1	88.23 +/- 0.11	89.39 +/-0.099	88.53 +/- 0.1	88.49 +/- 0.1	88.69 +/-0.086		
Cut4 :	88.71 +/- 0.1	88.88 +/- 0.1	88.03 +/- 0.11	89.2 +/- 0.1	88.29 +/- 0.1	88.24 +/- 0.1	88.52 +/-0.087		
Cut5 :	88.66 +/- 0.1	88.8 +/- 0.1	87.97 +/- 0.11	88.73 +/- 0.1	88.18 +/- 0.1	88.13 +/- 0.1	86.7 +/-0.092		
							_		
Cut6 :	88.16 +/- 0.1	88.47 +/- 0.1	87.82 +/- 0.11	87.99 +/- 0.1	87.43 +/- 0.11	87.3 +/- 0.11	73.14 +/- 0.12		
Cut7 :	81.72 +/- 0.13	81.74 +/- 0.13	81.23 +/- 0.13	81.62 +/- 0.13	81.04 +/- 0.13	81.14 +/- 0.13	67.98 +/- 0.13		
Cut8 :	81.55 +/- 0.13	81.59 +/- 0.13	81.07 +/- 0.13	81.42 +/- 0.13	80.85 +/- 0.13	80.87 +/- 0.13	67.89 +/- 0.13		
					Weights t	rained using	$H \rightarrow \sigma \sigma$		
					Toigints		1 2 88		
Eff. (%)	bb	cc	99	tt	WW	ZZ	aa		
Cut0 :	93.7 +/-0.079	93.69 +/- 0.08	93.4 +/-0.081	94.02 +/-0.077	94.04 +/-0.076	94.36 +/-0.074	93.71 +/-0.066		
Cut1 :	93.7 +/-0.079	93.69 +/- 0.08	93.4 +/-0.081	93.99 +/-0.077	94.02 +/-0.076	94.15 +/-0.075	93.7 +/-0.066		
Cut2 :	92.12 +/-0.087	92.06 +/-0.089	91.76 +/- 0.09			91.99 +/-0.087	91.21 +/-0.077		
Cut3 :	90.09 +/-0.097	90.2 +/-0.098	89.84 +/-0.099			89.78 +/-0.097	89.35 +/-0.084		
Cut4 :	89.88 +/-0.098	90.02 +/-0.098	89.64 +/-0.099			89.53 +/-0.098	89.17 +/-0.085		
Cut5 :	89.83 +/-0.098	89.94 +/-0.099		89.64 +/-0.099 89.87 +/-0.097 89.57 +/- 0.1 89.39 +/-0.099		89.42 +/-0.099	87.34 +/-0.091		
Cut6 :	89.28 +/- 0.1	89.58 +/- 0.1	89.42 +/- 0.1			88.56 +/- 0.1	73.67 +/- 0.12		
Cut7 :	82.75 +/- 0.12	82.75 +/- 0.12	82.67 +/- 0.12 82.23 +/- 0.12		88.66 +/- 0.1 82.16 +/- 0.12	82.28 +/- 0.12	68.48 +/- 0.13		
Cut8 :	82.58 +/- 0.12	82.59 +/- 0.12	82.5 +/- 0.12	82.02 +/- 0.12	81.98 +/- 0.12	82.02 +/- 0.12	68.38 +/- 0.13		
Cut9 :	82.58 +/- 0.12	82.59 +/- 0.12	82.5 +/- 0.12	82.02 +/- 0.12	81.98 +/- 0.12	82.02 +/- 0.12	68.38 +/- 0.13		
Cut10:	74.8 +/- 0.14	74.65 +/- 0.14	74.8 +/- 0.14	74.55 +/- 0.14	74.47 +/- 0.14	73.83 +/- 0.14	64.9 +/- 0.13		
CULID.	/4.0 +/- 0.14	/4.03 +/- 0.14	/4.0 +/- 0.14	/4.55 +/- 0.14	/4.4/ +/- 0.14	73.03 4/- 0.14	04.5 4/- 0.15		
Process: ZH> mu+ mu- H									
Polarization: (e-,e+) = (-0.8,+0.3) cut definition									
Cut 0 :	ut o:								
Cut 1 :									
Cut 2 :	: Ptdl>106&abs(Minv-91.18)<406&Mrec<1006&Mrec<300								
Cut 3 :									
Cut 4 :	: Ptdl>10&&Ptdl<70								
Cut 5 :									
Cut 6 :									
Cut 7 :									
Cut 8 : Mrec>100&&Mrec<160									

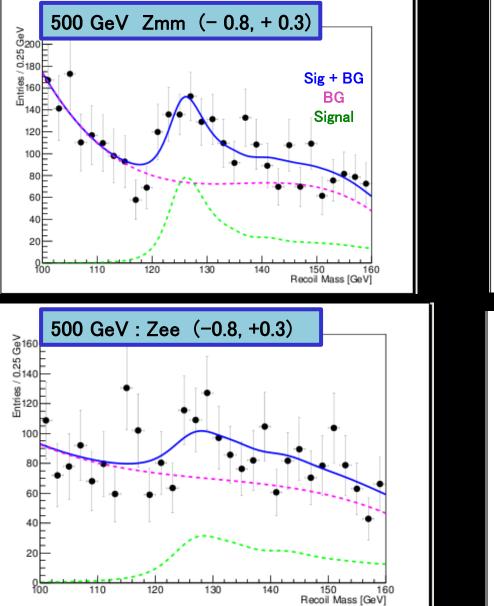
Check lepton pairing mistake is reduced : Zmm channel								
250 GeV	bb	cc	zz	WW	tautau	gg	аа	
Total	100.00%	100%	100.00%	100.00%	100.00%	100%	100.00%	
C1	100.00%	100%	94.66%	98.13%	99.35%	100%	99.94%	
C2	0.00%	0	4.97%	1.46%	0.51%	0.00%	0.06%	
C3 C4	0.00%	0	4.63%	0.46%	0.26%	0.00%	0.00%	
C5	0.00%	0	0.36%	0.41%	0.14%	0.00%	0.00%	
	0.00%	0	0.00%	0.00%	0.00%	0.00%	0.00%	
250 GeV	100.00%	100%	100.00%	100.00%	100.00%	100%	100.00%	
Total C1	100.00%	100%	95.47%	98.29%	99.41%	100%	99.91%	
C2	0.00%	0	4.26%	1.37%	0.49%	0.00%	0.09%	
C3 NEW	0.00%	0	3.85%	0.48%	0.28%	0.00%	0.00%	
C4	0.00%	0	0.27%	0.33%	0.10%	0.00%	0.00%	
C5	0.00%	0	0.00%	0.00%	0.00%	0.00%	0.00%	
	C1: correct							
	Pairing mis	stake [C2: two real leptons exist, but at least one wrong lepton					
			C3: both leptons wrong					
		C4: only 1 real lepton						
	C5: no real lepton							

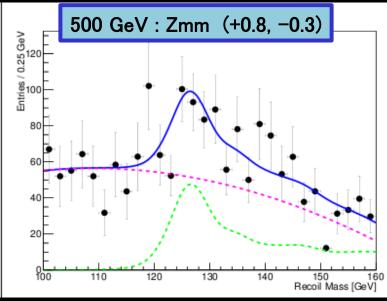
Efficien	cy of each Higgs	decay mode (aft	<u>er each cut)</u>				
Erec Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut5 : Cut5 : Cut6 : Cut7 : Cut8 : Cut8 : Cut9 : Cut9 : Cut9 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098 89.83 +/-0.098 89.28 +/- 0.11 82.75 +/- 0.12 82.58 +/- 0.12 82.58 +/- 0.12 74.8 +/- 0.14	cc 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.02 +/-0.098 89.94 +/-0.099 89.58 +/- 0.1 82.75 +/- 0.12 82.59 +/- 0.12 82.59 +/- 0.12 74.65 +/- 0.14	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099 89.57 +/- 0.1 89.42 +/- 0.1 82.67 +/- 0.12 82.5 +/- 0.12 82.5 +/- 0.12 74.8 +/- 0.14	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097 89.87 +/-0.097 89.39 +/-0.099 88.64 +/- 0.1 82.23 +/- 0.12 82.02 +/- 0.12 82.02 +/- 0.12 74.55 +/- 0.14	ww 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097 89.53 +/-0.098 89.43 +/-0.098 88.66 +/- 0.1 82.16 +/- 0.12 81.98 +/- 0.12 81.98 +/- 0.12 74.47 +/- 0.14	22 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097 89.53 +/-0.098 89.42 +/-0.099 88.56 +/- 0.1 82.28 +/- 0.12 82.02 +/- 0.12 82.02 +/- 0.12 73.83 +/- 0.14	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084 89.17 +/-0.085 87.34 +/-0.091 73.67 +/- 0.12 68.48 +/- 0.13 68.38 +/- 0.13 68.38 +/- 0.13 64.9 +/- 0.13
Cheat	pairing usin	g MC truth					
Eff. (%) Cut0 : Cut1 : Cut2 : Cut3 : Cut4 : Cut5 : Cut5 : Cut6 : Cut6 : Cut7 : Cut8 : Cut8 : Cut9 : Cut10:	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098 89.83 +/-0.098 89.28 +/- 0.11 82.75 +/- 0.12 82.58 +/- 0.12 82.58 +/- 0.12 82.58 +/- 0.14	cc 93.68 +/- 0.08 93.68 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.01 +/-0.098 89.94 +/-0.099 89.58 +/- 0.1 82.75 +/- 0.12 82.59 +/- 0.12 82.59 +/- 0.12 74.65 +/- 0.14	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099 89.57 +/- 0.1 89.42 +/- 0.1 82.67 +/- 0.12 82.5 +/- 0.12 82.5 +/- 0.12 74.8 +/- 0.14	tt 93.89 +/-0.077 93.89 +/-0.077 92.17 +/-0.087 90.21 +/-0.096 90.01 +/-0.097 89.54 +/-0.099 88.79 +/- 0.1 82.36 +/- 0.12 82.17 +/- 0.12 82.17 +/- 0.12 82.17 +/- 0.12 74.72 +/- 0.14	ww 93.62 +/-0.078 93.62 +/-0.078 91.95 +/-0.087 90.05 +/-0.096 89.84 +/-0.097 89.74 +/-0.097 88.97 +/- 0.1 82.49 +/- 0.12 82.3 +/- 0.12 82.3 +/- 0.12 74.79 +/- 0.14	22 93.86 +/-0.077 93.86 +/-0.077 92.28 +/-0.086 90.45 +/-0.094 90.24 +/-0.095 90.13 +/-0.096 89.31 +/-0.099 82.97 +/- 0.12 82.83 +/- 0.12 82.83 +/- 0.12 82.83 +/- 0.14	aa 93.7 +/-0.066 93.7 +/-0.066 91.24 +/-0.077 89.38 +/-0.084 89.21 +/-0.084 87.38 +/- 0.09 73.71 +/- 0.12 68.51 +/- 0.13 68.41 +/- 0.13 68.41 +/- 0.13 64.95 +/- 0.13

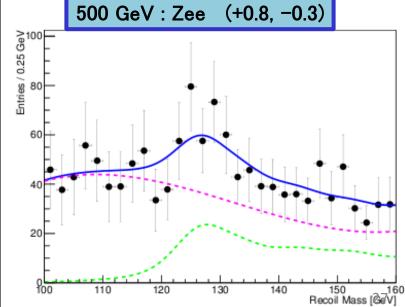

f <mark>fere</mark> nce between rea	ence between real and cheat				
bb	0.00%	0.12%			
cc	0.00%	0.12%			
gg	0.00%	0.12%			
tt	-0.15%	0.12%			
ww	-0.32%	0.12%			
zz	-0.85%	0.12%			
аа	-0.03%	0.13%			

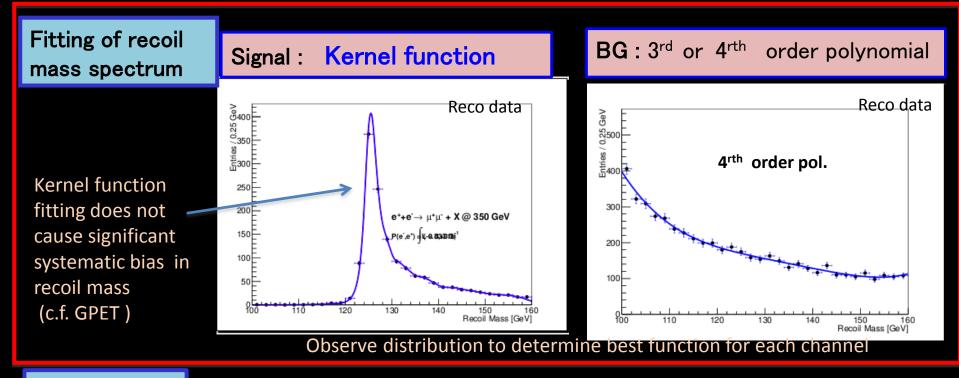
eff for $H \rightarrow ZZ$, ww is high now

"cheat pairing" (MC truth) results indicate that indeed the problem is due to paring non-prompt Z decay leptons.


maybe the only problem left



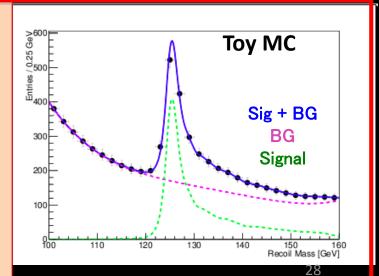



500 GeV

many challenges remaining: low statistics, low S/B ratio, ect...

Toy MC study

goal: test quality of fitting method


evaluate precision of xsec and recoil mass

<u>method</u>:

•generate MC events with 1000 x statistics according to fitted result of "real" data

•fit Toy events with same function : Kernel + polynomial

→ get signal yield, mass shift, and errors

Time Line (Current Status)

•Produced preliminary set of leptonic recoil results for all 3 center of mass energies (ECM=250, 350, 500 GeV) compatible with H20 scenario (review will be given today, and at ILC Summer Camp 7/21)

•Detailed study of Higgs decay mode dependence (= systematic errors) for 250 GeV using high stat samples <u>demonstrated mode bias is negligible even compared with the best $\Delta \sigma$ stat (H20)</u>

•making efforts to further improve xsec precision and suppress bias

e.g. semi-model independent analysis: separate Higgs visible and invisible decay modes. \rightarrow this will suppress the major BG 11 ν ν

We are currently writing a paper on leptonic Higgs recoil
Title (preliminary): Leptonic Higgs Recoil Analysis at the ILC
•personal plan to complete first draft by end of August (entire paper by end of year?)
•Then we can use draft as a "skeleton with some flesh" to visualize what else we can add / improve

Time Line (Plans)

The importance of recoil mass measurement (both leptonic and hadronic) for H20 scenario has been emphasized.

Important to improve leptonic recoil at 500 GeV AND begin on hadronic recoil
at least, these need to be done in parallel with further improving precision of leptonic recoil at 250 (350) GeV

(1)Converge to the best data selection methods to minimize Higgs decay mode dependence (= systematic errors) actually already quite negligible

(1)generate higher statistics sample for 350 and 500 GeV then use these to further improve precision for leptonic channel at 500 GeV as well as do ZZ fusion analysis

(3) Study systematic error from beam spectrum *→ need much time*

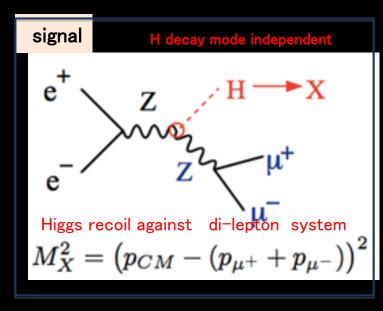
(4) Begin hadronic recoil at 500 GeV

strategy : for now carry out same method as what Miyamoto-san did for Snowmass and investigate Higgs decay mode dependence the same way as I did for (1)

Abstract of Leptonic Higgs Recoil Paper

Leptonic Higgs Recoil Analysis at the ILC

This paper reports on the expected precision for the model independent measurement of the absolute Higgs boson production cross section for the Higgsstrahlung process at the **ILC.** Only possible at the ILC, this unique measurement is **indispensable for extraction of** all Higgs branching ratios and couplings from event rates. Also reported is the expected precision for the Higgs recoil mass, which provides a window into physics beyond the Standard Model. The study here is based on full simulation of the ILD detector as proposed in the Technical Design Report. In the clean Higgsstrahlung process, the Higgs Boson is produced together with a Z boson which decays into a well-measurable dilepton system $(Z \rightarrow \mu \mu)$ or $Z \rightarrow ee$). In accordance with the most up to date plan of ILC accelerator operation, analysis has been carried out for three center of mass energies (Ecm) of 250, 350, and 500 GeV, and alternative beam polarization scenarios. Methods of signal selection are optimized to achieve the best ZH cross section precision while maintaining Higgs decay mode independence. At Ecm=250 GeV, where the best detector resolution is obtainable, the ZH cross section can be determined with a precision of 3.3%, while the expected Higgs mass precision is 39 MeV. (Reasonable precision a have also been demonstrated for the higher energies of 350 and 500 GeV which extend the physics reach).


recoil mass study using leptonic channes ECM = 250 GeV, 350 GeV, and 500 GeV

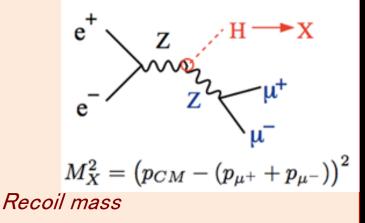
precise <u>model-independent</u> measurement of

absolute Higgs cross section and recoil mass

 σ_{ZH} is a "must-have" for measurement of total Higgs width & couplings
 •study impact of ECM and polarization

•contribute to the decision for ILC run scenario

originally study was focused on the new field of 350 GeV since many physics become important


this time, extended to all ECM and both leptonic channels

ILC sample used in analysis

chanel	mH	ECM	L	Spin polarization	Detector simulation
e+e→Zh->µµh e+e→Zh->eeh	125 GeV	250 GeV 350 GeV 500 GeV	250 fb-1 333 fb-1 500 fb-1	P(e-,e+) = (-0.8,+0.3) (+0.8,-0.3)	Full ILD (ILD_01_v05 DBD ver.)

Signal signature

a pair of isolated energetic leptons (μ / e) with invariant mass (M_{inv}) close to Z mass

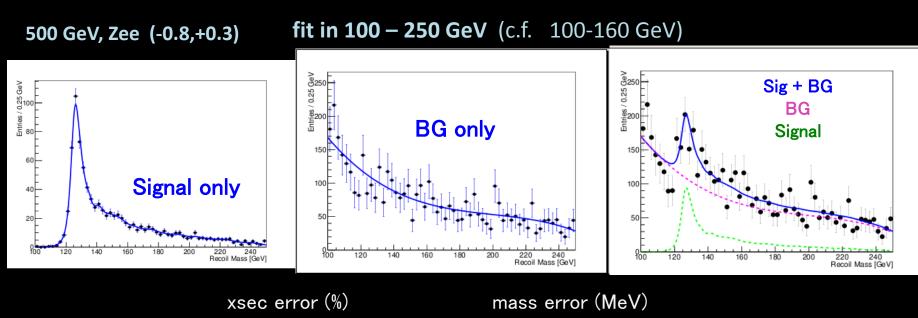
Dominant backgrounds

<u>Signatures</u>

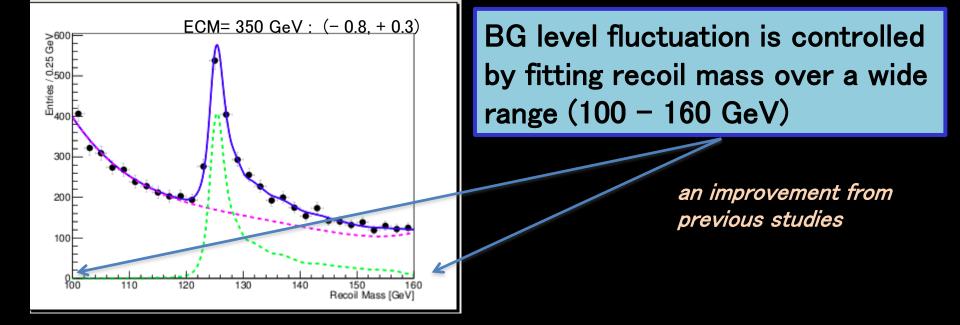
- $e+e- \rightarrow Z Z \rightarrow I+I-X$:
- e+ e- $\rightarrow \gamma Z \rightarrow \gamma I$ + I- :
- $e+e- \rightarrow WW \rightarrow I+I-vv:$
- forward Z production angle
 - energetic ISR γ which balance dilepton pt
- broad M_{inv} distr.

- data selection is based on signal / BG characteristics
- a final recoil mass window (100 160 GeV) is effective for cutting BG

Progress since the last (41th) General Meeting (April 11)


<u>Last Time</u>

- only $Z \rightarrow \mu\mu$ channel
- only ECM = 250 GeV and 350 GeV
- only study of xsec precision
- slight Higgs decay mode bias caused by BG rejection method


Features of This Time

- both $Z \rightarrow \mu \mu$ and $Z \rightarrow ee$ channels
 - all three ECM (250, 350, 500 GeV)
- study of both xsec and mass precision
- signal bias is minimized due to improved
 chniques (details later)
- + deeper study of the signal and BG statistics of each channel
- Converged to a full set of statistical error study results
- **optimized data selection method for each of the 12 scenarios** (3 ECM x 2 leptonic channels x 2 polarizations) in aim of best xsec and mass precision
- Removed systematic bias due to method of fitting or data selection

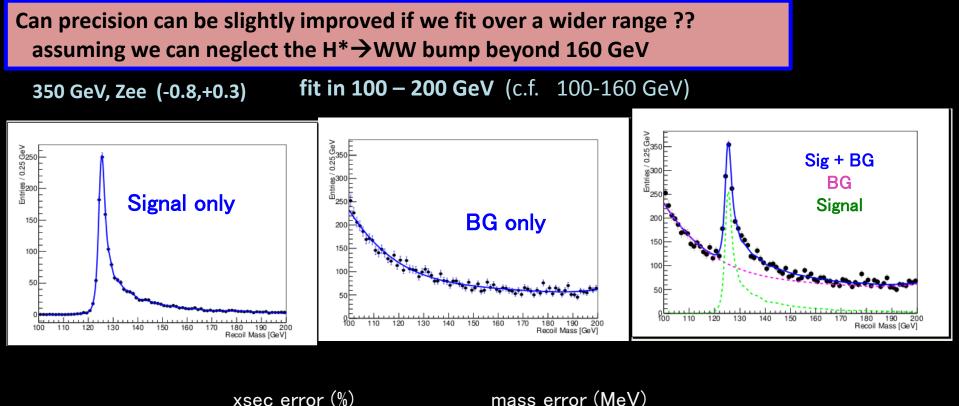
Can precision can be slightly improved if we fit over a wider range ? assuming we can neglect the H^{*}→WW bump beyond 160 GeV

(-0.8,+0.3)		narrow	wide	narrow	wide	
500GeV	Zmm	6.95%	6.50%	474	468	
	Zee	9.89%	7.86%	1540	1540	10-20 %
	Total	5.69%	5.01%	453	448	improvement on
(+0.8,-0.3)						xsec and a few %
500GeV	Zmm	8.36%	7.27%	613	572	on mass precision
	Zee	9.85%	7.86%	1510	1530	
	Total	6.37%	5.33%	568	536	35

- BG level is usually fixed for Toy MC (optimistic scenario)
- xsec error is about 10 % worse if we float BG (pessimistic scenario) not a big degradation since I fit recoil mass spectrum over a wide range

GOOD

Example:



Check lepton pairing mistake : Zee channel

	bb	сс	ZZ	ww	tautau	gg	аа
Total elec	100.00%	100%	100.00%	100.00%	100.00%	100.00%	100.00%
C1	99.91%	100%	97.36%	96.89%	98.35%	99.92%	98.15%
C2	0.05%	0.03%	1.97%	2.16%	1.06%	0.01%	1.38%
C3	0.00%	0.00%	1.17%	0.01%	0.01%	0.00%	0.02%
C4	0.04%	0.02%	0.66%	0.89%	0.52%	0.01%	0.41%
C5	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%

1	aarraat
U I	correct

Pairing mistake	C2: two real leptons exist, but at least one wrong lepton
	C3: both leptons wrong
	C4: only 1 real lepton
	C5: no real lepton

(-0.8,+0.3)		narrow	wide	narrow	wide	
350GeV	Zmm	3.90%	3.83%	101	103	
	Zee	5.63%	5.48%	327	340	
	Total	3.21%	3.14%	96.5	98.6	Not much room
(+0.8,-0.3)						for improvement
350GeV	Zmm	4.31%	4.24%	112	113	
	Zee	6.26%	6.15%	296	328	
	Total	3.55%	3.49%	105	107	38

0.8,+0.3)		xsec err	mass err [MeV]
250GeV	Zmm	3.35%	40.4
	Zee	4.76%	109
	Total	2.74%	37.9
350GeV	Zmm	3.90%	101
	Zee	5.63%	327
	Total	3.21%	96.5
500GeV	Zmm	6.95%	474
	Zee	9.89%	1540
	Total	5.69%	453

Mass error

•350 GeV is worse by factor of slightly less than 3 w.r.t. 250 GeV

•Zee is worse by a factor of 2 – 3 w.r.t. Zmm

•Systematic error of fitted recoil mass is negligible (< few MeV for 250, 350 GeV)

xsec error almost same as past results using GPET

Statistical error study results $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ combined

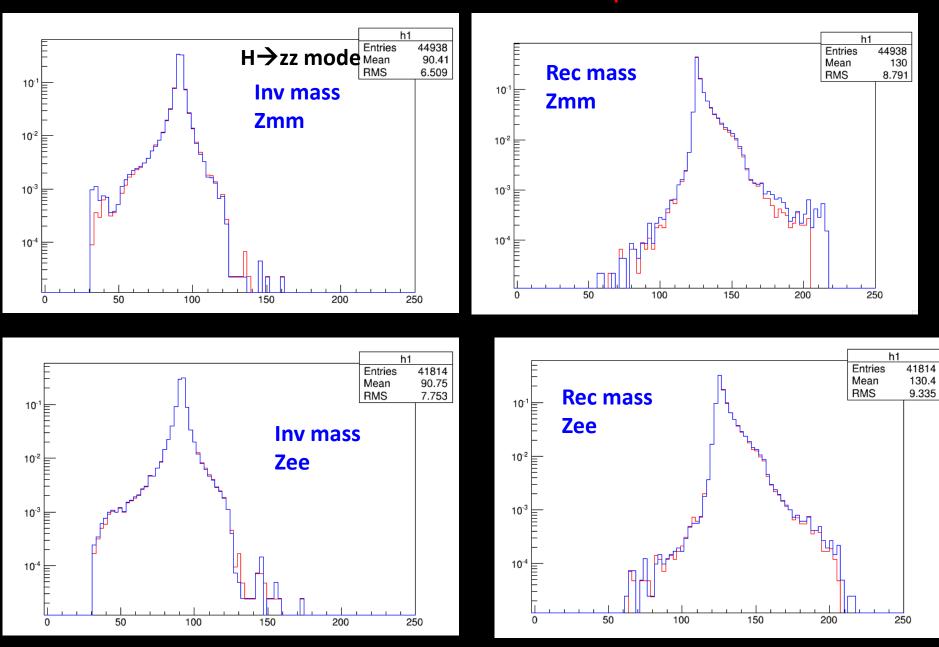
<u>xsec error</u>

- 350 GeV is 17 % worse w.r.t. 250 GeV
- 500 GeV is much worse
- Zee is worse by > 40% w.r.t. Zmm

right hand pol is worse by 5 – 10 % w.r.t.
left hand

(+0.8,-0.3)		xsec err	mass err [MeV]
250GeV	Zmm	3.57%	40.5
	Zee	5.14%	121
	Total	2.93%	38.4
350GeV	Zmm	4.31%	112
	Zee	6.26%	296
	Total	3.55%	105
500GeV	Zmm	8.36%	613
	Zee	9.85%	1510
	Total	6.37%	568 39

250 GeV	e2e2_Lpol				deviation	deviation
	N(100-160)	N_err	eff	eff_err	from avg	from ALL
bb	1885	5	72.40%	0.15%	0.42%	0.21%
сс	1882	5	72.29%	0.15%	0.31%	0.10%
tt	1883	5	72.33%	0.14%	0.35%	0.15%
gg	1872	5	71.91%	0.15%	-0.08%	-0.28%
WW	1866	5	71.67%	0.14%	-0.31%	-0.51%
ZZ	1856	5	71.29%	0.15%	-0.69%	-0.90%
all modes	1883	9	72.19%	0.27%		
		avg of 6	71.98%			


Efficiency of each Higgs
decay mode (after all cuts)

- systematic bias is < 1.3% for Zmm. < 4.2% for Zee
- $H \rightarrow zz$, $H \rightarrow ww$ most affected

(lepton pair containing lepton not from prompt Z decay)

250 GeV	e1e1_Lpol				deviation	deviation
	N(100-160)	deltaN	eff	eff_err	from avg	from ALL
bb	1491	6	54.65%	0.17%	-1.15%	-0.39%
сс	1497	6	54.86%	0.16%	-0.94%	-0.18%
tt	1480	6	54.21%	0.16%	-1.58%	-0.83%
gg	1484	6	54.38%	0.16%	-1.42%	-0.66%
WW	1469	6	53.83%	0.16%	-1.96%	-1.21%
ZZ	1442	6	52.83%	0.16%	-2.96%	-2.21%
all modes	1502	10	55.04%	0.28%		
		avg of 6	54.13%			

Blue : old Red: new : inv mass and recoil mass are not as spread out

Efficiency of each Higgs decay mode (after each cut)

Eff. (%)) bi	b	cc	99	tt	MC truth ,	with₂costhe	tamiss
Cut0 :	92.41 +/	/-0.086 92.43	+/-0.087 91.66	+/- 0.09 93.	1 +/-0.082 92.	.19 +/-0.086 9	2.41 +/-0.085	92.83 +/- 0.07
Cut1 :	92.41 +/	/-0.086 92.43	+/-0.087 91.66	+/- 0.09 93.	1 +/-0.082 92.	.19 +/-0.086 9	2.41 +/-0.085	92.83 +/- 0.07
Cut2 :	90.85 +/	/-0.094 90.84	+/-0.095 90.05	+/-0.098 91.4	1 +/- 0.09 90.	.56 +/-0.093 9	0.86 +/-0.093	90.51 +/- 0.08
Cut3 :	88.92 +/	/- 0.1 89.07	+/- 0.1 88.23	+/- 0.11 89.5	2 +/-0.099 88.	.74 +/- 0.1 8	9.11 +/- 0.1	88.72 +/-0.086
Cut4 :	88.71 +/	/- 0.1 88.88	+/- 0.1 88.03	+/- 0.11 89.3	33 +/- 0.1 88.	.54 +/- 0.1 8	8.91 +/- 0.1	88.55 +/-0.087
Cut5 :	88.66 +/	/- 0.1 88.8	+/- 0.1 87.97	+/- 0.11 88.8	37 +/- 0.1 88.	.44 +/- 0.1	88.8 +/- 0.1	86.73 +/-0.092
Cut6 :	88.16 +/	/- 0.1 88.47	+/- 0.1 87.82	+/- 0.11 88.1	12 +/- 0.1 87.	.69 +/- 0.11 8	8.01 +/- 0.1	73.17 +/- 0.12
Cut7 :	81.72 +/	/- 0.13 81.74	+/- 0.13 81.23	+/- 0.13 81.7	/4 +/- 0.12 81.	.29 +/- 0.12 8	1.76 +/- 0.12	68.01 +/- 0.13
Cut8 :	81.55 +/	/- 0.13 81.59	+/- 0.13 81.07	+/- 0.13 81.5	64 +/- 0.13 81.	.12 +/- 0.13 8	1.61 +/- 0.12	67.92 +/- 0.13
Cut9 :	81.55 +/	/- 0.13 81.59	+/- 0.13 81.07	+/- 0.13 81.5	64 +/- 0.13 81.	.12 +/- 0.13 8	1.61 +/- 0.12	67.92 +/- 0.13
Cut10:	74 +,	/- 0.14 73.88	+/- 0.14 73.63	+/- 0.14 74.2	22 +/- 0.14 73	3.8 +/- 0.14 7	4.53 +/- 0.14	64.49 +/- 0.13
								costhetamis
								Jostificianiis
Eff. (%	s) b	b		99	tt	ww	22	aa
Eff. (% Cut0 :	s) b 92.41 +	b /-0.086 92.43	+/-0.087 91.66	+/- 0.09 93.1	1 +/-0.082 92.3	ww 19 +/-0.086 92	zz .41 +/-0.085	aa 92.83 +/- 0.07
Eff. (% Cut0 : Cut1 :	s) b 92.41 + 92.41 +	b /-0.086 92.43 /-0.086 92.43	+/-0.087 91.66 +/-0.087 91.66	+/- 0.09 93.1 +/- 0.09 93.1	1 +/-0.082 92.3 1 +/-0.082 92.3	ww 19 +/-0.086 92 19 +/-0.086 92	zz .41 +/-0.085 .41 +/-0.085	aa 92.83 +/- 0.07 92.83 +/- 0.07
Eff. (% Cut0 : Cut1 : Cut2 :	s) b 92.41 + 92.41 + 90.85 +	b /-0.086 92.43 /-0.086 92.43 /-0.094 90.84	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05	+/- 0.09 93. +/- 0.09 93. +/-0.098 91.4	1 +/-0.082 92.3 1 +/-0.082 92.3 1 +/- 0.09 90.9	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90	zz .41 +/-0.085 .41 +/-0.085 .86 +/-0.093	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08
Eff. (% Cut0 : Cut1 : Cut2 : Cut2 :	s) b 92.41 + 92.41 + 90.85 + 88.92 +	b /-0.086 92.43 /-0.086 92.43 /-0.094 90.84 /- 0.1 89.07	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23	+/- 0.09 93. +/- 0.09 93. +/-0.098 91.4 +/- 0.11 89.5	1 +/-0.082 92.1 1 +/-0.082 92.1 1 +/- 0.09 90.1 2 +/-0.099 88.1	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89	22 .41 +/-0.085 .41 +/-0.085 .86 +/-0.093 .11 +/- 0.1	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 +	b /-0.086 92.43 /-0.094 90.84 /-0.1 89.07 /-0.1 88.88	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03	+/- 0.09 93. +/- 0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3	1 +/-0.082 92.3 1 +/-0.082 92.3 1 +/- 0.09 90.5 2 +/-0.099 88.3 3 +/- 0.1 88.5	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88	22 .41 +/-0.085 .41 +/-0.085 .86 +/-0.093 .11 +/- 0.1 .91 +/- 0.1	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 +	b /-0.086 92.43 /-0.094 90.84 /-0.1 89.07 /-0.1 88.88 /-0.1 88.8	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97	+/- 0.09 93. +/- 0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8	1 +/-0.082 92.1 1 +/-0.082 92.1 1 +/-0.09 90.1 2 +/-0.099 88.1 3 +/-0.1 88.5 7 +/-0.1 88.4	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81	22 .41 +/-0.085 .41 +/-0.085 .86 +/-0.093 .11 +/- 0.1 .91 +/- 0.1 8.8 +/- 0.1	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut6 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 + 88.66 +	b /-0.086 92.43 /-0.094 90.84 /-0.1 89.07 /-0.1 88.88 /-0.1 88.8 /-0.1 88.8	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97 +/- 0.1 87.97	+/- 0.09 93. +/- 0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8 +/- 0.11 88.8	1 +/-0.082 92.1 1 +/-0.082 92.1 1 +/-0.09 90.1 2 +/-0.099 88.1 3 +/-0.1 88.5 7 +/-0.1 88.4 7 +/-0.1 88.4	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81 44 +/- 0.1 81	22 .41 +/-0.085 .41 +/-0.085 .86 +/-0.093 .11 +/- 0.1 .91 +/- 0.1 8.8 +/- 0.1	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092 86.73 +/-0.092
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut6 : Cut7 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 + 88.66 + 88.66 + 82.09 +	b /-0.086 92.43 /-0.094 90.84 /-0.1 89.07 /-0.1 88.88 /-0.1 88.8 /-0.1 88.8 /-0.1 88.8 /-0.1 88.8	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97 +/- 0.1 87.97 +/- 0.1 87.97	+/- 0.09 93. +/- 0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8 +/- 0.11 88.8 +/- 0.13 82.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81 93 +/- 0.12 82	22 .41 +/-0.085 .41 +/-0.085 .86 +/-0.093 .11 +/- 0.1 .91 +/- 0.1 8.8 +/- 0.1 8.8 +/- 0.1 .32 +/- 0.12	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092 80.3 +/- 0.11
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut6 : Cut7 : Cut8 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 + 88.66 + 88.66 + 82.09 + 81.92 +	b /-0.086 92.43 /-0.086 92.43 /-0.094 90.84 /- 0.1 89.07 /- 0.1 88.88 /- 0.1 88.8 /- 0.1 88.8 /- 0.1 88.8 /- 0.1 88.8 /- 0.1 88.8	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97 +/- 0.1 87.97 +/- 0.13 81.35 +/- 0.13 81.19	+/- 0.09 93. +/- 0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8 +/- 0.11 88.8 +/- 0.13 82.2 +/- 0.13 82.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81 93 +/- 0.12 82 76 +/- 0.12 82	22 .41 +/-0.085 .41 +/-0.085 .86 +/-0.093 .11 +/- 0.1 .91 +/- 0.1 8.8 +/- 0.1 8.8 +/- 0.1 .32 +/- 0.12	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092 80.73 +/-0.11 80.12 +/- 0.11
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut5 : Cut6 : Cut7 : Cut8 : Cut9 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 + 88.66 + 82.09 + 81.92 + 81.92 +	b /-0.086 92.43 /-0.086 92.43 /-0.094 90.84 /- 0.1 89.07 /- 0.1 88.88 /- 0.1 88.8 /- 0.1 81.86 /- 0.1 81.86	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97 +/- 0.1 87.97 +/- 0.13 81.35 +/- 0.13 81.19 +/- 0.13 81.19	+/- 0.09 93. +/-0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8 +/- 0.11 88.8 +/- 0.13 82.2 +/- 0.13 82.00 +/- 0.13 82.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81 93 +/- 0.12 82 76 +/- 0.12 82 76 +/- 0.12 82	$\begin{array}{c} 22\\ .41 + -0.085\\ .41 + -0.085\\ .86 + -0.093\\ .11 + - 0.1\\ .91 + - 0.1\\ .91 + - 0.1\\ .8.8 + - 0.1\\ .32 + - 0.12\\ .18 + - 0.12\\ .18 + - 0.12\\ .8 + - 0.12\\ $	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092 80.3 +/- 0.11 80.12 +/- 0.11
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut6 : Cut7 : Cut8 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 + 88.66 + 88.66 + 82.09 + 81.92 +	b /-0.086 92.43 /-0.086 92.43 /-0.094 90.84 /- 0.1 89.07 /- 0.1 88.88 /- 0.1 88.8 /- 0.1 81.86 /- 0.1 81.86	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97 +/- 0.1 87.97 +/- 0.13 81.35 +/- 0.13 81.19 +/- 0.13 81.19	+/- 0.09 93. +/-0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8 +/- 0.11 88.8 +/- 0.13 82.2 +/- 0.13 82.0 +/- 0.13 82.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81 93 +/- 0.12 82 76 +/- 0.12 82 76 +/- 0.12 82	$\begin{array}{c} 22\\ .41 + -0.085\\ .41 + -0.085\\ .86 + -0.093\\ .11 + - 0.1\\ .91 + - 0.1\\ .91 + - 0.1\\ .8.8 + - 0.1\\ .32 + - 0.12\\ .18 + - 0.12\\ .18 + - 0.12\\ .8 + - 0.12\\ $	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092 80.3 +/- 0.11 80.12 +/- 0.11
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut5 : Cut6 : Cut7 : Cut8 : Cut9 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 + 88.66 + 82.09 + 81.92 + 81.92 +	b /-0.086 92.43 /-0.086 92.43 /-0.094 90.84 /- 0.1 89.07 /- 0.1 88.88 /- 0.1 88.8 /- 0.1 81.86 /- 0.1 81.86	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97 +/- 0.1 87.97 +/- 0.13 81.35 +/- 0.13 81.19 +/- 0.13 81.19	+/- 0.09 93. +/-0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8 +/- 0.11 88.8 +/- 0.13 82.2 +/- 0.13 82.00 +/- 0.13 82.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81 93 +/- 0.12 82 76 +/- 0.12 82 76 +/- 0.12 82	$\begin{array}{c} 22\\ .41 + -0.085\\ .41 + -0.085\\ .86 + -0.093\\ .11 + - 0.1\\ .91 + - 0.1\\ .91 + - 0.1\\ .8.8 + - 0.1\\ .32 + - 0.12\\ .18 + - 0.12\\ .18 + - 0.12\\ .8 + - 0.12\\ $	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092 80.3 +/- 0.11 80.12 +/- 0.11
Eff. (% Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut5 : Cut6 : Cut7 : Cut8 : Cut9 :	s) b 92.41 + 92.41 + 90.85 + 88.92 + 88.71 + 88.66 + 88.66 + 82.09 + 81.92 + 81.92 +	b /-0.086 92.43 /-0.086 92.43 /-0.094 90.84 /- 0.1 89.07 /- 0.1 88.88 /- 0.1 88.8 /- 0.1 81.86 /- 0.1 81.86	+/-0.087 91.66 +/-0.087 91.66 +/-0.095 90.05 +/- 0.1 88.23 +/- 0.1 88.03 +/- 0.1 87.97 +/- 0.1 87.97 +/- 0.13 81.35 +/- 0.13 81.19 +/- 0.13 81.19	+/- 0.09 93. +/-0.09 93. +/-0.098 91.4 +/- 0.11 89.5 +/- 0.11 89.3 +/- 0.11 88.8 +/- 0.11 88.8 +/- 0.13 82.2 +/- 0.13 82.00 +/- 0.13 82.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ww 19 +/-0.086 92 19 +/-0.086 92 56 +/-0.093 90 74 +/- 0.1 89 54 +/- 0.1 88 44 +/- 0.1 81 93 +/- 0.12 82 76 +/- 0.12 82 76 +/- 0.12 82	$\begin{array}{c} 22\\ .41 + -0.085\\ .41 + -0.085\\ .86 + -0.093\\ .11 + - 0.1\\ .91 + - 0.1\\ .91 + - 0.1\\ .8.8 + - 0.1\\ .32 + - 0.1\\ .32 + - 0.12\\ .18 + - 0.12\\ .18 + - 0.12\\ .01 + - 0.14\end{array}$	aa 92.83 +/- 0.07 92.83 +/- 0.07 90.51 +/- 0.08 88.72 +/-0.086 88.55 +/-0.087 86.73 +/-0.092 80.3 +/- 0.11 80.12 +/- 0.11

cut definition Polarization: (e-,e+) = (-0.8,+0.3) -----Cuts-----•Bias on aa mode is greatly reduced by a Cut 0 : factor of 10 1: leptype==13 Cut 2 : Ptdl>106&abs(Minv-91.18)<40&&Mrec>100&&Mrec<300 Cut 3: Minv>73&&Minv<120 Cut Ptdl>10&&Ptdl<70 4 : Cut •Remaining bias from Minv and Ptsum cut (Ptsum<0||Ptsum>10) Cut 5: !((Evis-Elep1-Elep2-Ephotonmax)<1066Ephotonmax>066abs(cosmis)>0.98) 6: Cut Cut 7 : abs(cosz) < 0.9Cut 8 : Mrec>100&&Mrec<160

Efficiency of each Higgs decay mode (after each cut)

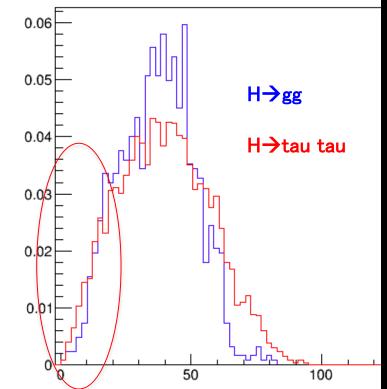
MC truth , with costhetamiss

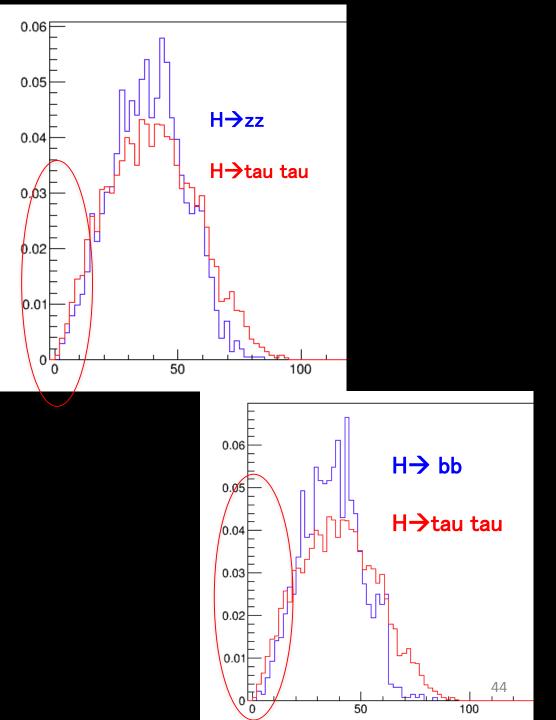
Eff.	(%)	bb	cc	gg	tt	ww	zz	aa
Cut0	:	87.86 +/- 0.11	87.72 +/- 0.11	87.02 +/- 0.11	88.21 +/- 0.1	87.91 +/- 0.11	87.98 +/- 0.1	88.84 +/-0.083
Cut1	:	87.86 +/- 0.11	87.72 +/- 0.11	87.02 +/- 0.11	88.21 +/- 0.1	87.91 +/- 0.11	87.98 +/- 0.1	88.84 +/-0.083
Cut2	:	86.23 +/- 0.12	86.12 +/- 0.11	85.33 +/- 0.11	86.45 +/- 0.11	86.3 +/- 0.11	86.24 +/- 0.11	86.06 +/-0.091
Cut3	:	84.15 +/- 0.12	84.05 +/- 0.12	83.28 +/- 0.12	84.23 +/- 0.12	84.17 +/- 0.12	84.09 +/- 0.12	83.89 +/-0.096
Cut4	:	84.05 +/- 0.12	83.96 +/- 0.12	83.2 +/- 0.12	84.13 +/- 0.12	84.06 +/- 0.12	83.99 +/- 0.12	83.8 +/-0.097
Cut5	:	84 +/- 0.13	83.88 +/- 0.12	83.13 +/- 0.12	83.68 +/- 0.12	83.97 +/- 0.12	83.88 +/- 0.12	82.09 +/- 0.1
Cut6	:	83.51 +/- 0.13	83.54 +/- 0.12	82.95 +/- 0.12	83 +/- 0.12	83.19 +/- 0.12	83.13 +/- 0.12	70.04 +/- 0.12
Cut7	:	77.41 +/- 0.14	77.53 +/- 0.14	76.82 +/- 0.14	77.22 +/- 0.13	77.15 +/- 0.14	77.36 +/- 0.13	65.13 +/- 0.13
Cut8	:	77.22 +/- 0.14	77.3 +/- 0.14	76.56 +/- 0.14	77 +/- 0.14	76.93 +/- 0.14	77.11 +/- 0.13	64.97 +/- 0.13
Cut9	:	77.22 +/- 0.14	77.3 +/- 0.14	76.56 +/- 0.14	77 +/- 0.14	76.93 +/- 0.14	77.11 +/- 0.13	64.97 +/- 0.13
Cut10):	68.76 +/- 0.16	68.64 +/- 0.15	68.35 +/- 0.15	68.83 +/- 0.15	68.48 +/- 0.15	69 +/- 0.15	60.27 +/- 0.13

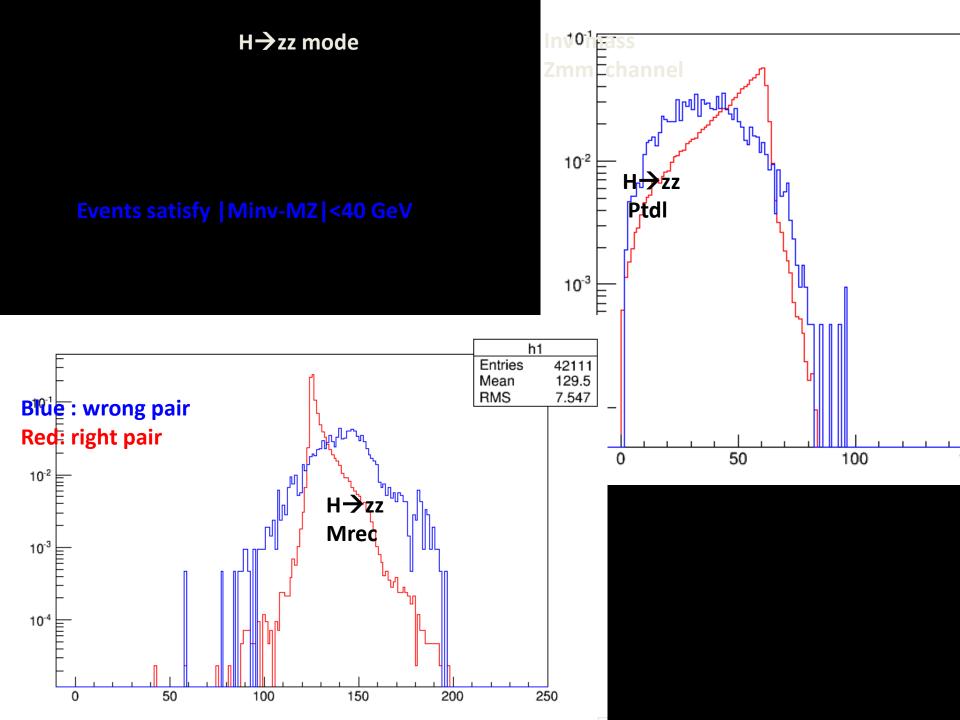
MC Truth, no costhetamis

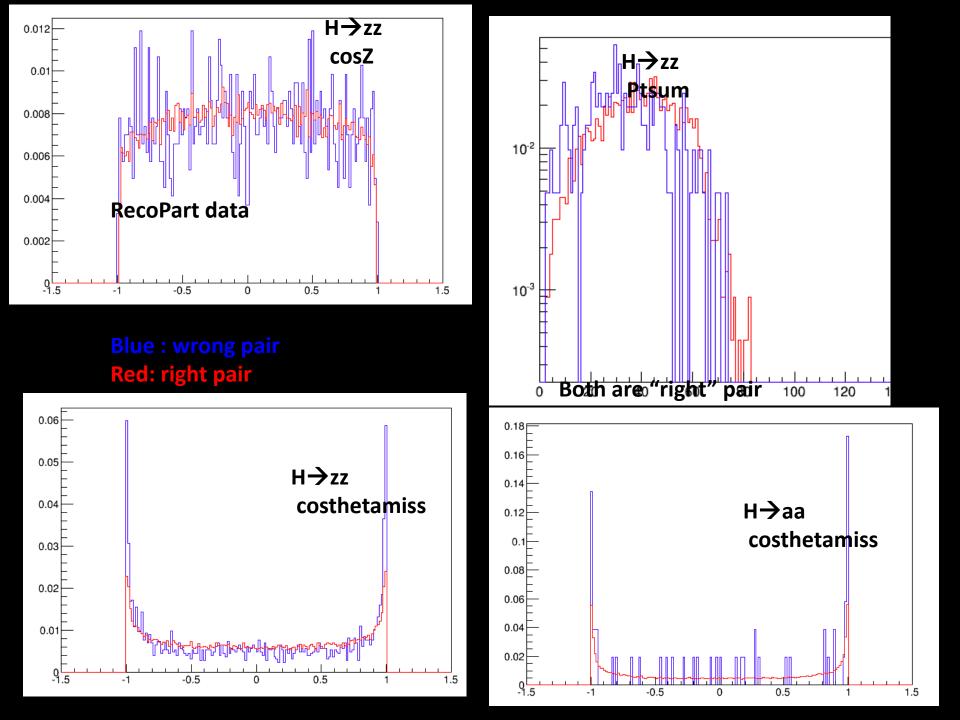
							· · · · · · · · · · · · · · · · · · ·	
Eff.	(%)	bb	cc	gg	tt	WW	zz	aa
Cut0	:	87.86 +/- 0.11	87.72 +/- 0.11	87.02 +/- 0.11	88.21 +/- 0.1	87.91 +/- 0.11	87.98 +/- 0.1	88.84 +/-0.083
Cut1	:	87.86 +/- 0.11	87.72 +/- 0.11	87.02 +/- 0.11	88.21 +/- 0.1	87.91 +/- 0.11	87.98 +/- 0.1	88.84 +/-0.083
Cut2	:	86.23 +/- 0.12	86.12 +/- 0.11	85.33 +/- 0.11	86.45 +/- 0.11	86.3 +/- 0.11	86.24 +/- 0.11	86.06 +/-0.091
Cut3	:	84.15 +/- 0.12	84.05 +/- 0.12	83.28 +/- 0.12	84.23 +/- 0.12	84.17 +/- 0.12	84.09 +/- 0.12	83.89 +/-0.096
Cut4	:	84.05 +/- 0.12	83.96 +/- 0.12	83.2 +/- 0.12	84.13 +/- 0.12	84.06 +/- 0.12	83.99 +/- 0.12	83.8 +/-0.097
Cut5	:	84 +/- 0.13	83.88 +/- 0.12	83.13 +/- 0.12	83.68 +/- 0.12	83.97 +/- 0.12	83.88 +/- 0.12	82.09 +/- 0.1
Cut6	:	84 +/- 0.13	83.88 +/- 0.12	83.13 +/- 0.12	83.68 +/- 0.12	83.97 +/- 0.12	83.88 +/- 0.12	82.09 +/- 0.1
Cut7	:	77.82 +/- 0.14	77.82 +/- 0.14	76.96 +/- 0.14	77.71 +/- 0.13	77.82 +/- 0.13	77.91 +/- 0.13	76.11 +/- 0.11
Cut8	:	77.62 +/- 0.14	77.59 +/- 0.14	76.71 +/- 0.14	77.49 +/- 0.13	77.6 +/- 0.14	77.67 +/- 0.13	75.87 +/- 0.11
Cut9	:	77.62 +/- 0.14	77.59 +/- 0.14	76.71 +/- 0.14	77.49 +/- 0.13	77.6 +/- 0.14	77.67 +/- 0.13	75.87 +/- 0.11
Cut10):	69.11 +/- 0.16	68.9 +/- 0.15	68.46 +/- 0.15	69.24 +/- 0.15	69.08 +/- 0.15	69.46 +/- 0.15	67.84 +/- 0.12

Process: ZH> e+ e- H Polarization: (e-,e+) = (-0.8,+0.3) CutsCuts					If on	
Cut 0:				•Bia		
Cut	1	:	leptype==11			
Cut	2	:	Ptdl>1066abs(Minv-91.18)<6066Mrec>10066Mrec<300			
- Cut	3	:	Minv>73&&Minv<120			
Cut	4	:	Ptdl>10&&Ptdl<70			
Cut	5	:	(Ptsum<0 Ptsum>10)			
- Cut	6	:	!((Evis-Elep1-Elep2-Ephotonmax)<10&&Ephotonmax>0&&abs(cosmis)>0.98)			
Cut	7	:	abs(cosz) < 0.9			
Cut	8	:	Mrec>10066Mrec<160			

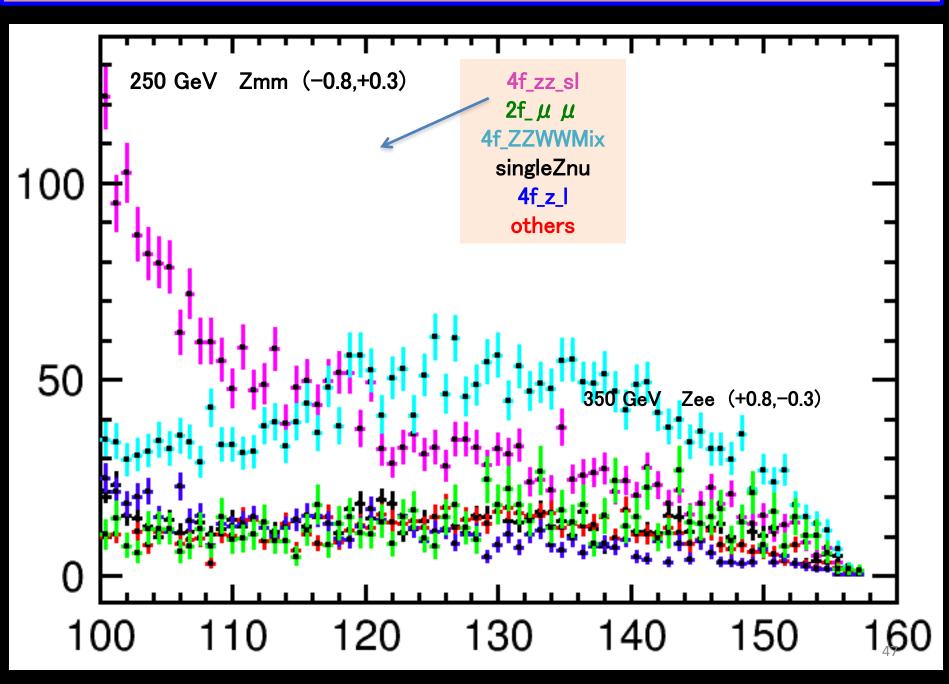

If omit costhetamiss cut

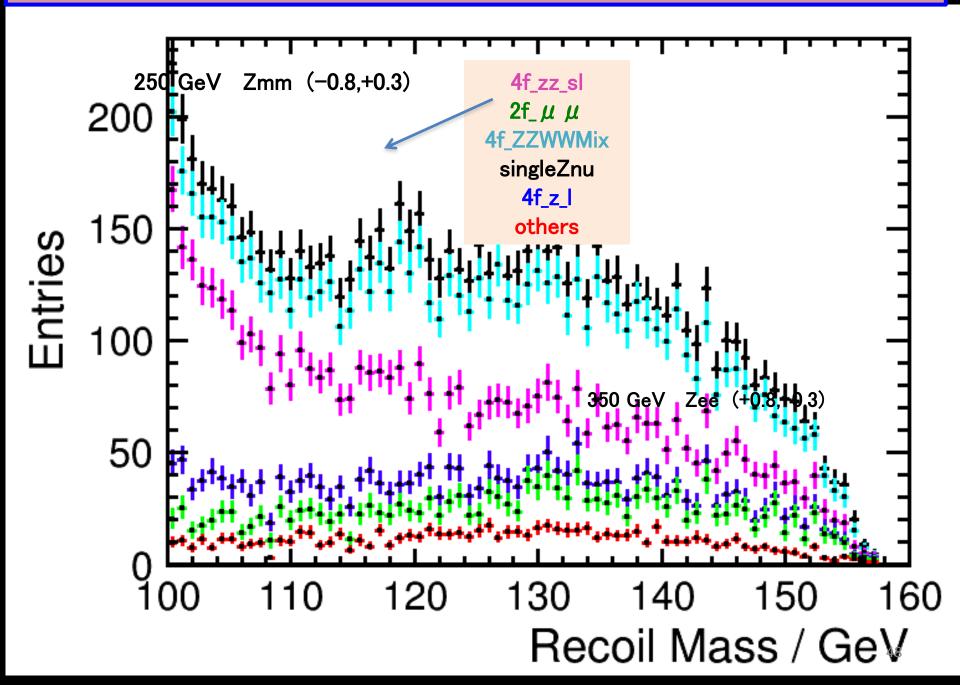

•Bias on aa mode is greatly reduced by a factor of 10


•Remaining bias from Minv and Ptsum cut


observation of Ptsum distr
(at stage just before Ptsum cut)
Zmm channel

Compare to other modes, H→tau tau seem very slightly biased in region of Ptsum < 10





250 GeV Zmm left pol

250 GeV Zmm left pol

