Cryogenic System of ILC IR

Takahiro Okamura

KEK/IPNS/Cryo

2015/9/1

Contents

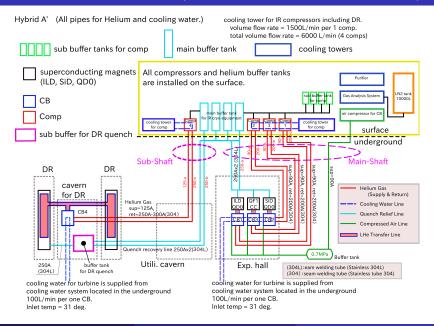
- Overview of IR-Cryogenics
- 2 Layout of cryogenic system
- Brief specification on surface
 - Compressor house
 - Helium gas buffer tank
 - Liquid nitrogen tank
- Brief specification in the underground
 - Cryogenic configuration in the DH.
 - Cold Boxes
 - Other cryo-utilities (2K refrigerator, etc.)
- Oryo Control System
- Summary

Overview of cryogenic system for IR

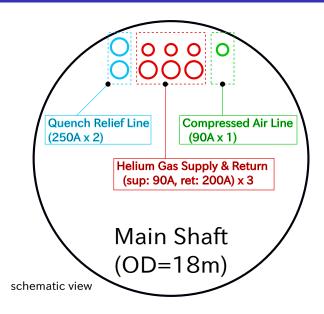
Required Item

Following superconducting magnets are mandatory.

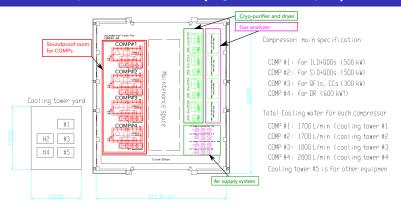
- \bullet ILD + 2QD0s
- \bullet SiD + 2QD0s


Undetermined Item

Followings are not decided so far^a.


- QF1, (pressurized superfluid He II)
- CC, (saturated superfluid He II)
- DR, (supercritical He?)
- BDS Cryo (superfluid He II)

^aQF1, CC and DR superconducting magnets should be involved in IR.


Cryo Configuration (ILD,SID,QD0,QF1,CC,DR)

Pipes passed through MS

Compressor house (layout example)

- 4 helium compressors (in the soundproof room).
- Air supply system, cryo-purifier, dryer and gas analyzer.
- 25 ton crane for installation and maintenance.
- Total ventilation capacity of 40000 m³/hour.^a

^a40000m³ is obtained from Japanese High Pressure gas regulation.

Helium Compressor

Helium compressor

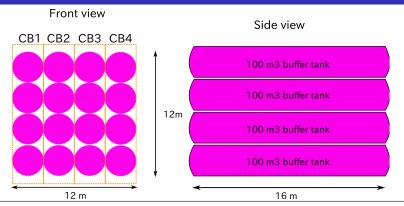
- 4 compressors are installed on the surface (in a compressor house).
- Mechanical noise have to be reduced.
 - Bare intensity of mechanical noise is around 100 dB in the case of MYCOM.
 - Noise intensity can be reduced to 70 dB by employing soundproof house (example of J-PARC neutrino cryo-system).
- Required amount of cooling water (after cooler and oil cooler) for 4 compressors are described below.

COMP. No.	Cryo equipment	Shaft Power	Cooling Water
Comp1	ILD+QD0s	$\sim 500~\mathrm{kW}$	$\sim 1700~{ m L/min}$
Comp2	SiD+QD0s	$\sim 500~\mathrm{kW}$	$\sim 1700 \; \mathrm{L/min}$
Comp3	QF1s & CCs	$\sim 300~\mathrm{kW}$	$\sim 1000~{ m L/min}$
Comp4	DR(RFs & Wigglers)	$\sim 600 \; \mathrm{kW}$	$\sim 2000~\mathrm{L/min}$

Necessity of liquid nitrogen tank

♠ In the underground

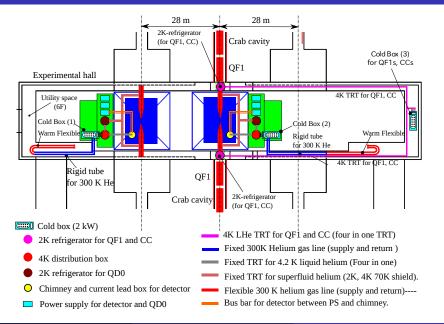
• Liquid nitrogen should not be employed from the view point of safety.

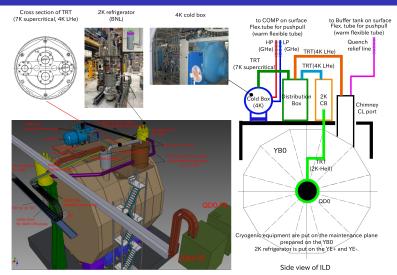

♠ On the surface

- Liquid nitrogen should be employed following two operation.
 - cryo-purifier
 - \Rightarrow Gas analyzer and cryo-purifier are also installed in the compressor house.
 - 2 charcoal baking process ^a during maintenance season.
 - \Rightarrow LN2 Evaporator also should be prepared in this case.

Liquid nitrogen tank with the size of $\sim 10000\ \text{L}$ had better be employed proximity to comp. house.

 $^{^{\}text{a}}\text{Charcoal}$ (volume \sim OD=1.5m, height=3.5m) should be employed for oil separator.


Helium buffer tank yard


Total volume $\sim 1600 \text{ m}^3$, Allowable pressure $\sim 2.0 \text{ MPa}$

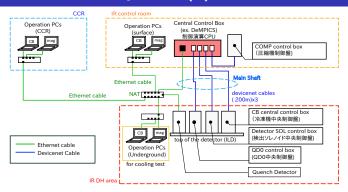
- ILD: 400 m³
- SiD: 400 m³
- QF1,CC,DR: 800 m³

Layout example in DH (ILD,SiD,QD0,QF1,CC)

Layout example for ILD

Most of the cryo-equipment should be located on the YBO platform in order that ILD detector should be divided into 5 sectors as easy as possible.

During push-pull and maintenance


During pushpull

- without breaking up all kinds of tubes.
- Al bas-bar should be disconnected during push-pull.
 - \Rightarrow Excitation can not be done.
 - 20kA P.S will be installed on the utility area.

During ILD maintenance

- End cap (YE+,YE-) are only moved existing gap between end cap and support post.
 - CB, 2K-refrigerator and all kinds of tubes don't have to be divided and removed.
- All iron yokes are divided into 5 sectors.
 - TRT,CB, 2K refrigerator have to be decomposed.

Control System (1) overview

- Each control boxes should be located proximity to each equipment to reduce a lot of signal cables length.
- All signals obtained from each control box are concentrated in a CCB.
- Connection method between each control box and CCB are performed by a few devicenet cables.
- Connection method between operation computers and CCB is performed by Ethernet cables.

Control System (2) for quench protection

- Sampling time for control the IR cryogenic system is 1 sec.
- Characteristic time for magnet quench is msec order which is completely different from cryo control characteristic time (sampling time $\simeq 1$ sec.). So we have to prepare dedicated quench detector system near the magnet control box.
- Magnet control box for detector and QD0s is located on the each detector. All signal of superconducting magnet (such as voltage between selected two taps) are concentrated in the box.
- The quench detector has a rule in magnet slow down, fast down if it detects magnet quench.
- We can know the quench signal and origin of the quench by operation computer.
- The connection way between quench detector and operation computer is performed by Ethernet.

Japanese High Pressure Gas Regulation

- There are two regulations in Japan. Which is better?
 - 一般則 1
 - 冷凍則 which is better than 一般則. 2
- We have to prepare ventilation system in following 3 buildings.³
 - Detector hall. (capacity = 28000m3/h) ⁴
 - Assembly hall. (capacity = 28000m3/h)
 - Compressor house. (capacity = 40000m3/h) ⁵

¹一般則 is applied to general equipment with high pressure gas. 冷凍則 is dedicated regulation which is applied to refrigeration system with any kinds of coolant.

²In case of 冷凍則, without overhaul inspection every year.

³according to 冷凍則.

⁴Capacity is the summation of ILD, SiD, QD0, CC, QF1.

⁵Capacity is the summation of ILD, SiD, QD0, CC, QF1 and DR.

Summary

on the surface

- compressor house {p7,8,9}
 - 4 helium compressors (SiD,ILD,QD0,QF1,CC)
 - air compressors
 - purification system, gas analyzers, dryer
- cooling tower for compressors {p8}
- liquid nitrogen tank (10000 L) {p9}
- Helium gas buffer tank {p10}

in the DH

- 3 Cold boxes. {p11,12,Appendix(C)}
- power supply for magnet excitation. {p11,12,Appendix(E)}
- 2K cold boxes for QD0, {p11,12,Appendix(E)}
- 2K cold boxes for QF1, CC {p11}
- chimney, distribution box(6000 L dewar). {p11,12,Appendix(E)}
- cooling water for turbines (for brake cooler).

Appendix

- Appendix(A): Cryogenic Configuration
- Appendix(B): Compressor house specification
- Appendix(C): Role of the cold boxes
- Appendix(D): 3D view of ILD cryo structure
- Appendix(E): 3D view of ILD cryo structure
- Appendix(F): 2D view of ILD cryo structure

Appendix (A): Cryogenic Configuration

♠ Helium Compressor

- All compressors (4 compressors) are installed on the surface.
- Cooling towers for comps are also installed on the surface.

♠ Helium Cold Box

- All CBs (4 cold boxes) are installed in the underground.
 - CB1:ILD+QD0, CB2:SiD+QD0, CB3:QF1+CCs, CB4:DR^a
 - CB1, CB2 and CB3 are located in the DHb
 - CB4 is installed in the DR cavern.
- ♠ Cryogenic Pipes (^{def} HP, LP, magnet quench line)
 - Cryogenic pipes for CB1,CB2 and CB3 are laid through main shaft.
 - Cryogenic pipes for CB4 are laid through sub-shaft.
- ♠ Helium gas storage method
 - Gas storage \Rightarrow Buffer tanks should be installed on surface.

^aDR: Damping Ring

^bDH: Detector Hall

Appendix (B): Compressor house specification

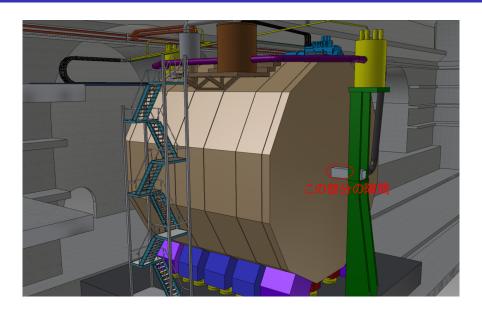
Brief Specification of Compressor House

- House size is L=37m, W=32m, H=10m \sim 15m.
- 4 comps (COMP1 to COMP4) are installed in the house.
- House has 25 ton crane for installation and maintenance.
- Total ventilation capacity of compressor house is 40000 m³/hour (from the Japanese High Pressure Gas Safety Law).
- \bullet In order to reduce noise of compressor ~ 100 dB, soundproof room should be employed in the house. $^{\rm a}$
- Air supply systems are also installed in the house.
- Gas analyzer and cryo-purifier are also installed in the house.
 - ightarrow Liquid nitrogen tank with the size of \sim 10000 L had better be employed near the comp. house b

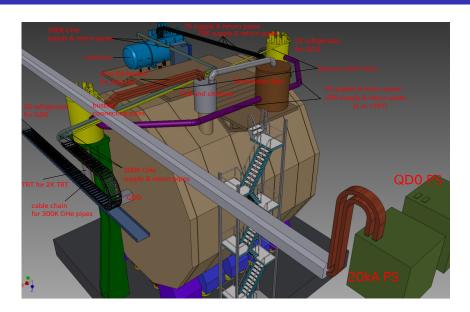
 $[^]a$ By employing soundproof room, noise of compressor can be reduced from 100 dB to 70 dB

^bP13 shows necessity of liquid nitrogen tank.

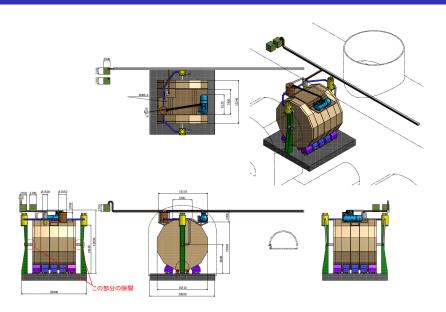
Appendix (C): Role of the cold boxes


Cold box for detector should be installed on the platform (on the detector) if vibration, magnetic field, radiation problem don't occur.

- CB1: for ILD and QD0s cooling
 - installation on the platform if vibration problem does not occur.
- CB2: for SiD and QD0s cooling
 - installation on the platform if vibration problem does not occur.
- CB3: for QF1s and CCs cooling
 - installation on the utility floor in the DH.
- CB4: for Wiggler and RF cooling
 - installation in the DR cavern.


Utilities for cold box

- Cooling water for expansion turbines installed in the CBs are supplied from dedicated cooling water system for the underground.
- Air supply system for control valves should be installed in the underground.


Appendix (D): 3D view

Appendix (E): 3D view

Appendix (F): 2D view

