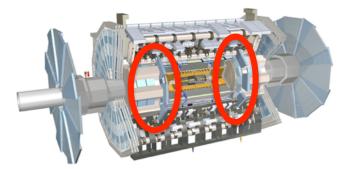


LHC-ATLASアップグレードに向けた Micromegas検出器のAgeing試験

山﨑友寬, 川本辰男A, 片岡洋介A, 増渕達也A, 齋藤智之, 山谷昌大, 木村光太郎, 越智敦彦B, 山根史弥B, 山内悟B, 長谷川大晃B, 長坂憲子B

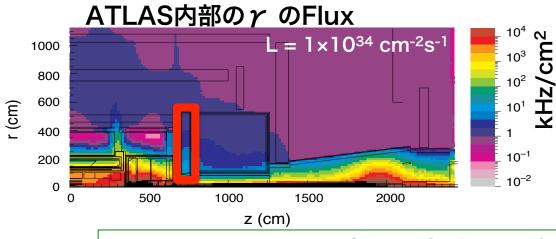
東大理,東大素セA,神戸大理B


第12回MPGD研究会 2015年12月4日 広島大学東広島キャンパス

New Small Wheel

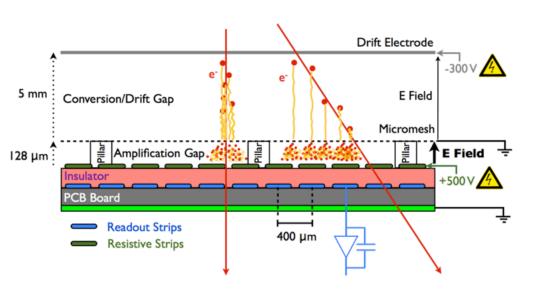
2019年,高ルミノシティに対応するためミューオン検出器の一部 を取り替え

現在の検出器(ドリフトチューブ)は,高ヒットレートで検出効率が低下

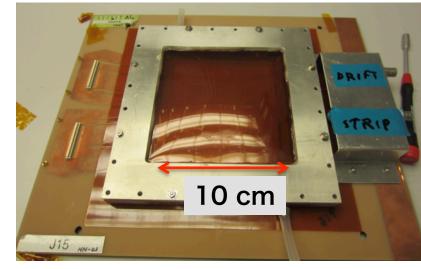

➡ 応答時間の短いMicromegasを導入!

Micromegasに対する要求

- Tracking
 - 位置分解能 <100 μm
 - 検出効率 > 99%
- ・HL-LHC で10年以上の 安定動作と耐久性が要求される


ATLAS内部でのバックグラウンドが問題 (中性子, γ 線,荷電粒子)

HL-LHC (L = 5×10^{34} cm⁻²s⁻¹)の環境 最大ヒットレート 10 kHz/cm² アフラックス 140 kHz/cm²


Micromegas

Micro-mesh gaseous structure

Gas	Ar 93% + CO ₂ 7%
Strip pitch	400 μm
Gain	O(10 ⁴)
Drift velocity	5 cm/μsec

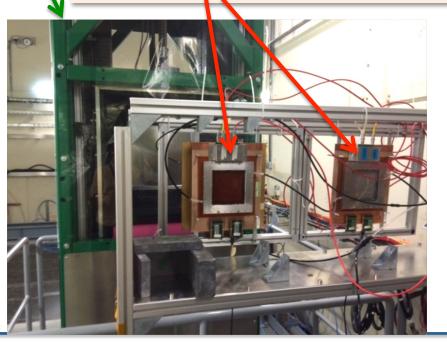
小型試作器

今回のtalk:

小型試作器を使ったAgeing試験

- √γ線照射試験
- √α線照射試験

γ線照射試験


γ線ageing試験

γ線によるAgeing試験

@GIF++: γ線照射施設 (CERN)

γ線源:¹³⁷Cs (662 keV) 14 TBq

Micromegas 2台 (線源から1m) γ Flux: 130 MHz/cm²

- ・ γ のヒットレートはHL-LHCの100倍
- ・580 V (gain 5000)で 10 日間照射
- ランダムトリガーでデータ取得
- ・Anodeの電流をモニター
- ・照射の前後で以下を確認
 - √ゲイン
 - ✓ストリップの抵抗値
 - √表面状態
 - ✓ 検出効率,位置分解能

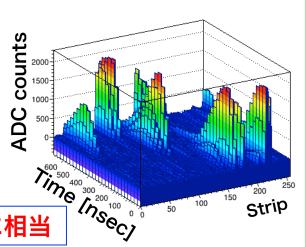
ヒットレート

期待されたヒットレート

 γ flux: 130 MHz/cm² (14 TBq, 1 m)

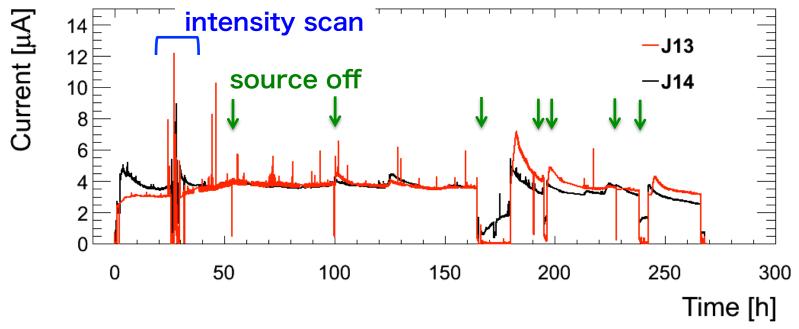
Sensitivity: 2.0 ×10⁻³ (Geant4 シミュレーション)

ヒットレート: 260 kHz/cm²



データから計算したヒットレート

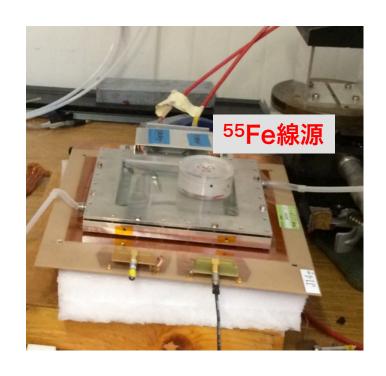
ヒットレート= クラスター数/(1イベントの時間×面積)

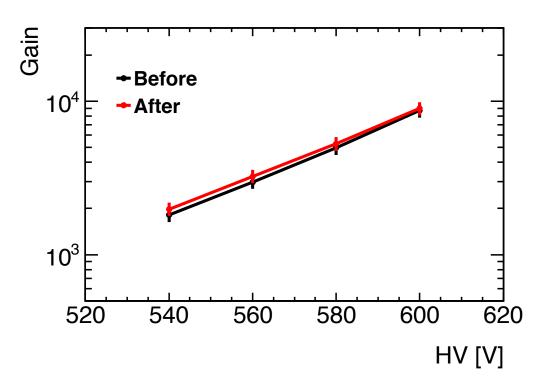

Chamber型番	Hit rate
J13	171 kHz/cm ²
J14	151 kHz/cm ²

10日間の照射 → HL-LHC 10年分の γ によるヒットに相当

アノード電流

アノード 580 Vで230時間照射 (2台投入) Currentは 3.7 μA (有感領域 10×10 cm²)

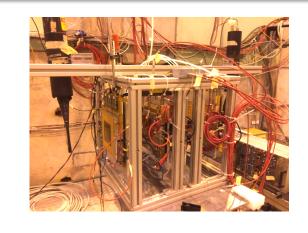


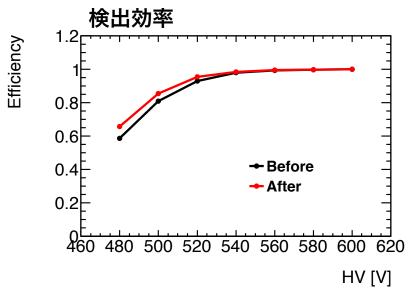

総電荷量は、約30 mC/cm²

HL-LHC 10年分での、 γ による総電荷量に匹敵 γ 以外からのヒットも考えると、さらにAgeingが必要

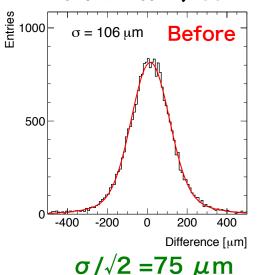
ゲインの変化

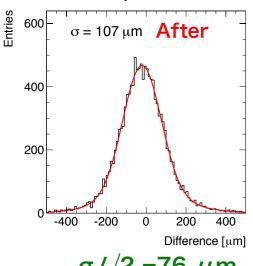
55Fe線源を用いて、照射の前後でゲインを測定




照射の前後で、ゲインに変化は見られず

検出効率·位置分解能

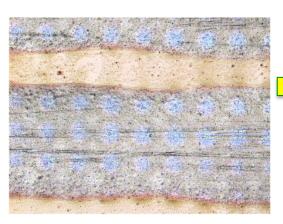

照射前後にPion beam (120 GeV) でperformanceの確認

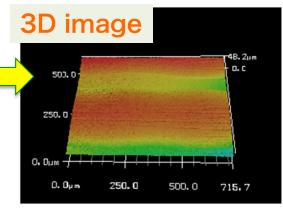

✓ 位置分解能 = (2台のchamberのヒット位置の差)/√2

位置分解能 (2台のchamberの差)

表面状態

照射後に、表面を観察




色が変わっているように見える

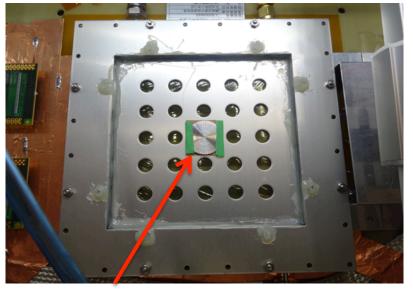
✓抵抗測定結果

	表面の抵抗値
照射前	1.3 MΩ/sq
照射後	$10~\text{M}\Omega/\text{sq}$

→ 表面に何かが付着?

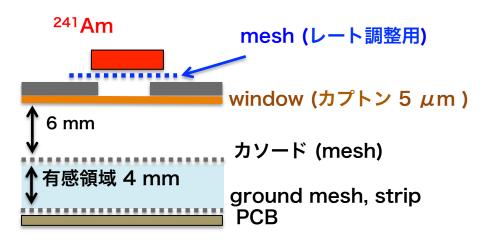
レーザー顕微鏡で観察

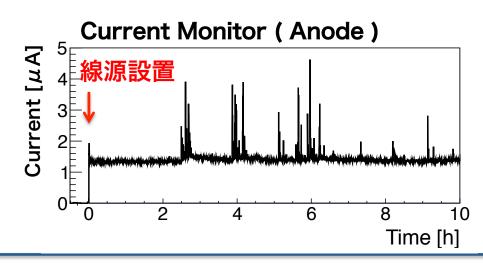
メッシュの構造が残っている


→3Dではみられず

α 線照射試験

α線照射


α線を用いて中性子ヒットによる大きなEnergy depositの影響を評価


Micromegas試作器 (Sputtering)

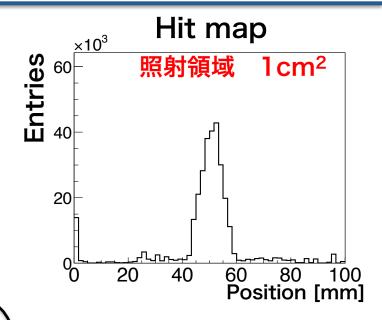
²⁴¹Am (5.5 MeV)

anode 540Vで、4日間照射

ヒットレート

Ageing のレート計算

ATLASでの中性子による大きなSignalのレートと 照射したα線のSignalのレートを比較

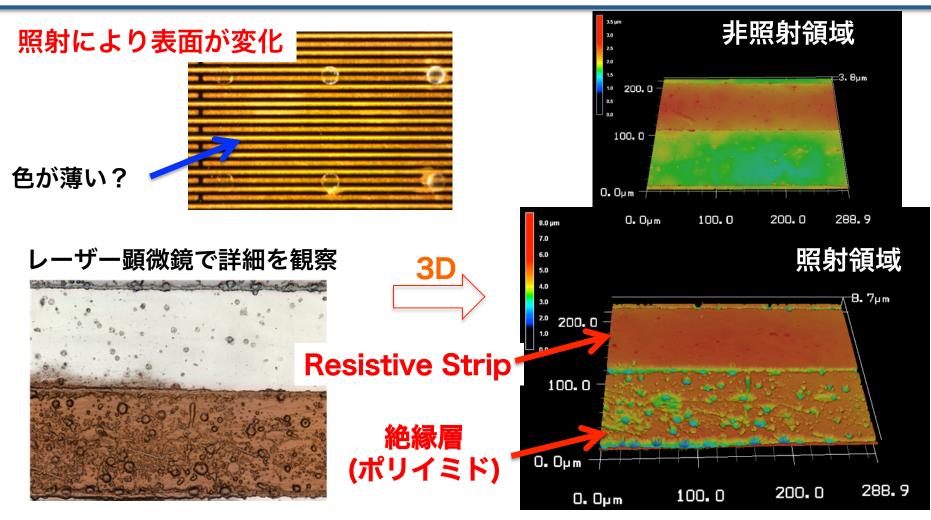

ATLASでの最大中性子ヒットレート

500 Hz/cm² (HL-LHC)

今回のlpha線照射 (4days)

30 kHz/cm²

(Total Charge 520mC/cm²)

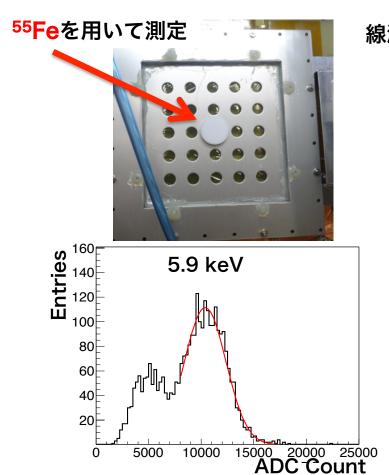


×60の加速試験

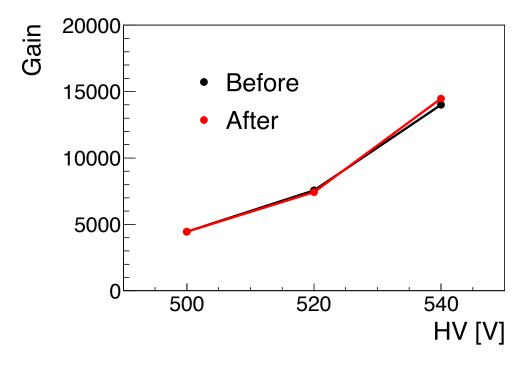
今回はHL-LHC 3.5年分 (今後さらに続ける)

4 days \times 60 / (6×10⁶ sec/year) \sim 3.5 years LHC σ operation time

表面状態



- ✓ Resistive strip にダメージは見られない →パフォーマンスには影響ない
- \checkmark 絶縁層に傷 (深さ 1 − 2 μ m) \rightarrow 絶縁層の厚さは $50~\mu$ m あり、影響は小さい

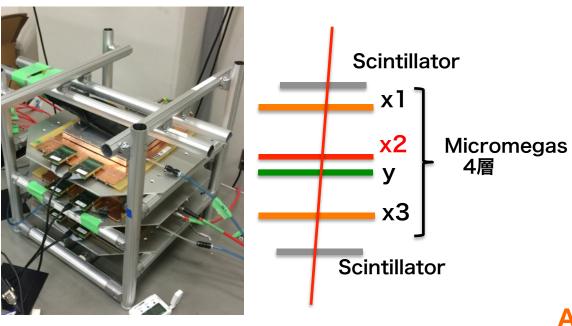

ゲイン測定

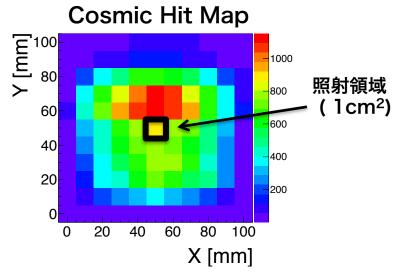
α線照射前後にゲインの変化を確認

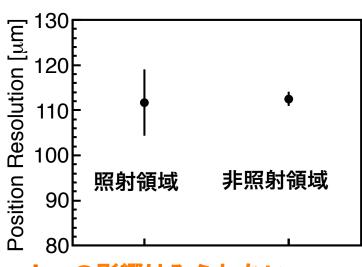
Resistive strip (アノード) に損傷があると、ゲインが変化する可能性

線源の位置はAmと同じ → 照射領域のゲイン

ν α線照射前後でゲインに変化なし


位置分解能


Cosmic test (α 線照射後)


α線を照射したチェンバー + 3台のチェンバー

→ residual と 2次元のHit位置を求める

residual =
$$x^2$$
 - ($x^1 + x^3$) / 2

Ageingの影響はみられない

まとめと展望

まとめ

- ・2019年にMicromegasをATLASにインストール
- ・γ線とα線を使ったAgeing test の結果,
 - 表面に変化がみられた (今後詳しく調査)
 - ゲインに変化はなし
 - Performanceも,検出効率,位置分解能ともに問題なし

展望

- ・さらなるAgeing試験を行う
 - γ線照射を現在継続中
 - screen printで製作したチェンバーに対してもlpha線照射