Reconstruction of $\boldsymbol{\tau}$ using impact parameters

e.g. e+e-
$$\rightarrow$$
 (H \rightarrow τ τ) (Z \rightarrow μ μ)

Daniel Jeans U. Tokyo

August 2015

Some tau decay modes:

Simplest case $\sim 11\% \ \tau^+ \rightarrow \pi^+ \nu$

Largest BR ~25% $\tau^+ \rightarrow \pi^+ \pi^0 \nu$

Leptonic ~35% $\tau^+ \rightarrow (e/\mu)^+ \nu \nu$ two missing neutrinos \leftarrow limited information, ignore for now

We would ideally like to fully reconstruct the tau momentum and its decay products

However, τ always decays into at least one neutrino

To optimally use events with taus, want to fully reconstruct the τ how to reconstruct the invisible neutrino momentum? <u>traditional method</u> e.g. LEP, BELLE, ...

traditional method

consider whole event e.g. $e^+e^- \rightarrow \tau^+ \tau^-$

<u>assume</u> we know τ-τ centre-of-mass (CoM) τ-τ invariant mass

 $\pi + h^0$ event in τ-τ CoM cone angle depends on assumed τ energy boost measured momenta into CoM τ-τ invariant mass → τ energy for each τ of known energy: τ mass $\rightarrow \tau$ momentum at fixed angle to hadronic momentum (cone) τ-τ are back-to-back in CoM:

→ 2 solutions for τ momentum (intersections of 2 cones)

5

assume that π/τ trajectory is approx linear between PCA/IP and V OK since typical radius of curvature >> T decay length

measured "track plane" defined by IP-PCA and Mom@PCA (these two vectors are perpendicular)

- τ momentum lies inside track plane (linear approx.)

 \rightarrow (h^o + v) momentum lies in track plane

→ v momentum out of plane = - h^0 momentum out of plane

parameterise ν momentum inside plane

x is <u>unit</u> vector parallel to hadronic momentum inside plane y is <u>unit</u> vector in plane, perpendicular to x Q is magnitude of momentum in plane

 $v_{\parallel} = Q (x \cos \psi + y \sin \psi)$

So we can write the neutrino momentum as $v = Q (x \cos \psi + y \sin \psi) - h_{perp}^{0}$ two unknown parameters, Q and ψ

4-momentum of $\tau = \pi + h^0 + v$

invariant mass of ${\boldsymbol{\tau}}$ is well-known

 \rightarrow for each choice of ψ can calculate Q (2 solutions)

 $\rightarrow\,$ calculate full kinematics of τ for an assumed ψ including lifetime

often one solution gives a negative lifetime, and can be rejected

we have reduced the problem of finding v momentum to: <u>HOW TO CHOOSE ψ ?</u>

consider whole event h⁰ e.g. $e^+ e^- \rightarrow (H \rightarrow \tau \tau) (Z \rightarrow \mu \mu)$ choose ψ values which muon tracks used to define the IP minimise the event's p_{τ} (could also use known IP constraint) ISR h^0 If there are no invisible particles recoiling against τ - τ system (except along beam-pipe), p_{T} of event must be balanced because of ISR/beamstrahlung, 10 don't make requirements on p_{z}

e⁺ e⁻ → H µ+ µ- events generated @ 250 GeV Whizard with CIRCE1 ISR/BS H → ττ; τ decayed by TAUOLA: either both $\pi^+\nu$ or both $\pi^+\pi^0\nu$ (ρν)

Full ILD simulation, DBD version ILD_v05_o1 Usual ILD reconstruction + GARLIC, no underlying event overlay Cheat matching of GARLIC/Pandora clusters to π^0 , and of $\pi^0 \pi^+$ to τ apply π^0 mass constraint to two photon system

Track and pi0 reconstruction

How does event p_{τ} depend on ψ chosen for two taus?

neutrino co-linear with hadrons in track plane

Four possible solutions with small $p_{\rm T}$ easy to find minima using e.g. MINUIT

how to choose which one?

How does event p_{τ} depend on ψ chosen for two taus?

How does event p_{τ} depend on ψ chosen for two taus?

For now, choose smallest p_{τ} minimum with positive decay length

How well does it work? Check the invariant mass of $\tau\tau$ system: should be 125 GeV

width of central peak $\sim 0.6 \text{ GeV}$ for $\pi^+\nu$ $\sim 1.1 \text{ GeV}$ for $\pi^+\pi^0\nu$

95% of $\pi^+\nu$ 89% of $\pi^+\pi^0\nu$ within 10 GeV of peak easily distinguished from Z

reconstruction method for hadronic tau decays works well @ ILC

requires good IP reconstruction and impact parameter resolution of order 10 microns (interesting to exactly how good it needs to be)

insensitive boost along beam axis

- \rightarrow ISR, beamstrahlung OK, HZ above threshold OK
- → in principle, also applicable to hadron collider experiments if impact parameter resolution sufficiently good
 - if IP can be measured

Paper submitted to NIM-A (arXiv:1507.01700)

Now working on removing cheating (associating tracks, clusters to taus) then use tau spins to measure Higgs CP¹⁹