Higgs Recoil Mass Study using Z→II at ECM=250, 350 GeV and 500 GeV at ILC

> ILC Physics Meeting Aug 28, 2015 Jacqueline Yan (KEK)

LAST MEETING

- Improvement due to implementing visible energy cut
- some efforts to suppress Higgs decay mode dependence

THIS WEEK

replaced likelihood cut with TMVA cut (Boosted Decision Tree)

more efficient BG reduction, improvement in precision of xsec and mass

continue study of Higgs decay mode dependence for all three ECM 250, 350, 500 GeV

first preliminary draft of Higgs recoil paper

Lepton Pair Candidate Selection

opposite +/- 1 charge

- E_cluster / P_total : < 0.5 (μ) / > 0.9 (e)
- isolation (small cone energy)

ightarrow removes nearly all 4f_WW_sl BG

- Minv closest to Z mass
- |D0/δD0| < 5

Final Selection

- 73 < GeV < M_inv < 120 GeV
- 10 GeV < pt_dl < 140 GeV

$$\left|\overrightarrow{P_{t,sum}}\right| \equiv \left|\overrightarrow{P_{t,\gamma}} + \overrightarrow{P_{t,dl}}\right| > 10 \text{ GeV}$$

- |cos(θ_missing)| < 0.98
- |cos(θ_Z)| < 0.9
- 100 GeV < Mrecoil < 160 GeV
- Likelihood cut

Example of ECM=350 GeV,

Data selections designed to guarantee Higgs decay mode independence

Optimized in terms of signal significance and xsec measurement precision

definition

- M_inv : invariant mass of 2 muons
- pt_dl : pt of reconstructed lepton pair
- pt,γ : pt of most energetic photon
- θ_{missing} = polar angle of undetected particles
- $\theta_Z = Z$ production angle

- Effective for cutting $\mu \mu$ / ee BG
- Use info of most energetic photon $(pt_{\gamma}, cone energy)$ meanwhile minimize bias on signal

red box:

key improvements w.r.t. previous studies

similar methods applied to all ECM and polarizations

A bug was discovered in the cos θ missing cut (cos θ miss < 0.98) cos θ missing cut is targeted at removing 2f BG, not much more than leptons and γ

In order to prevent Higgs events (with neutrinos in jets) to be cut away a safety protection was placed as only cut if :: "Evis – Elep1-Elep2-Ey < 10 GeV" && "cos0miss > 0.98"

This should be "Evis - Eγ < 10 GeV" because the calculated Evis already exclude energy of isolated leptons !!

We were cutting away a lot of Higgs events!! (mainly WW and yy modes)

After correction, Higgs decay mode bias was greatly reduced !!

However BG (2f BG) rejection also less \rightarrow precision slightly worse

From here on, will refer to (*) in "Evis - Ey < (*) GeV" as the "protection limit".

After correcting cos0missing cut, bias on Higgs decay mode was greatly reduced !!

	Mode bias weig	shed by	SM BR
	eff(final)	dev*BR	7mm
bb	82.58%	0.170%	211111 250 GeV
сс	82.59%	0.008%	
gg	82.50%	0.018%	
tt	82.02%	-0.017%	
ww	81.98%	-0.066%	old
zz	82.02%	-0.007%	
aa	68.38%	-0.032%	
	Weighed avg	82.29%	
	eff(final)	dev ∗ BR	

efficiency of H $\rightarrow \gamma \gamma$ rise by $\sim 12\%$ (68.4% \rightarrow 80.7%)		
		BR
efficiency of other modes rise by	bb	57.8%
0.5 – 1%	сс	2.7%
Important I · WW 77 no longer	gg	8.6%
	tt	6.4%
significantly biased	ww	21.6
(despite "mistaken lepton pairing)	zz	2.7%
	aa	0.2%

Efficiency values weighed by SM BR

	eff(final)	dev*BR	
bb	82.99%	0.075%	
cc	82.87%	0.000%	
gg	82.63%	-0.020%	new
tt	82.68%	-0.011%	
ww	82.96%	0.022%	
zz	83.41%	0.015%	
aa	80.71%	-0.005%	
	Weighed avg	82.86 %	

$a_{\rm res} = (a_{\rm res}) 0.075\%$:
syst error is (max) 0.075%	

IF assume "no exotic decay, but no knpwledge of BR", syst error is 3.2 %
 (0.94% excluding H-->γγ)

 $\sigma = N/L/\varepsilon :: \quad \Delta \sigma/\sigma = \Delta \varepsilon/\varepsilon$

What about the possibility of unknown exotic decay modes ?-> see next page

What about the possibility of unknown exotic decay modes ?

- So far, we have explored a wide kinematic range (the 7 known modes)
- any exotic decay modes should resemble one of these modes
- Strategy: assign 10% of "unknown mode" to one of the known SM modes
- for the remaining part, we can make use of SM BR information

Signature	Syst err	 some residual bias on γ γ mode from Ptsum cut gg mode suffers from lower lepton finder efficiency
γγ−like	0.20%	(jets are widely spread)
gg-like	0.18%	• "mistakan lanton nairing" may not be that serious ?
bb-like	0.07%	From LHC data it is uproplicitie to expect large $\chi \chi$ RP 2
WW-like	0.06%	From Life data, it is unrealistic to expect large 7 7 DR ?

Pushing all 10% (big ratio !) of an unknown decay mode to a certain signature is a very pessimistic (conservative) assumption Now we are getting close to ensuring leptonic recoil is mode independent !

In addition, also checked efficiency consistency within two sigmas between L and R polarizations (only ZZ* mode slightly out of bounds, due to angular distr.)

try to improve efficiency of $\cos \theta$ miss cut Find "protection" which yields best signal-BG separation observe distribution of Evis – E γ for 2f_BG and signal

try to improve efficiency of $\cos \theta$ miss cut observe distribution of Evis – E γ signal modes (Zee) using high statis sample

try to improve efficiency of $\cos \theta$ miss cut

observe distribution of Evis – E γ signal modes (Zmm) using high statis sample

Even if we move protection limit upwards (20 GeV for Zmm, 40 GeV for Zee) mode decay bias is not affected much

- Any reduction in efficiency is below MC stat uncertainty for almost all modes
- final efficiency (after all cuts) not affected
- we can confidently move the limit up after checking mode bias

Cut6 is cos0miss

7							
E1	bb	cc	99	tt	WW	22	aa
Cut0 :	93.7 +/- 0.1	93.68 +/- 0.1	93.4 +/- 0.11	93.89 +/- 0.1	93.62 +/- 0.1	93.86 +/- 0.1	93.7 +/-0.077
Cut1 :	93.7 +/- 0.1	93.68 +/- 0.1	93.4 +/- 0.11	93.89 +/- 0.1	93.62 +/- 0.1	93.86 +/- 0.1	93.7 +/-0.077
Cut2 :	92.12 +/- 0.11	92.06 +/- 0.12	91.76 +/- 0.12	92.17 +/- 0.11	91.95 +/- 0.11	92.28 +/- 0.11	91.24 +/-0.089
Cut3 :	90.09 +/- 0.12	90.2 +/- 0.13	89.84 +/- 0.13	90.21 +/- 0.12	90.05 +/- 0.12	90.45 +/- 0.12	89.38 +/-0.095
Cut4 :	89.88 +/- 0.13	90.01 +/- 0.13	89.64 +/- 0.13	90.01 +/- 0.12	89.84 +/- 0.12	90.24 +/- 0.12	89.21 +/-0.096
Cut5 :	89.83 +/- 0.13	89.94 +/- 0.13	89.57 +/- 0.13	89.54 +/- 0.13	89.74 +/- 0.13	90.13 +/- 0.12	87.38 +/- 0.1
Cut6 :	89.83 +/- 0.13	89.94 +/- 0.13	89.57 +/- 0.13	89.54 +/- 0.13	89.74 +/- 0.13	90.12 +/- 0.12	87.37 +/- 0.1
Cut7 :	83.16 +/- 0.15	83.03 +/- 0.15	82.8 +/- 0.15	82.88 +/- 0.15	83.14 +/- 0.15	83.56 +/- 0.15	80.89 +/- 0.12
Cut8 :	82.99 +/- 0.15	82.87 +/- 0.15	82.63 +/- 0.15	82.67 +/- 0.15	82.96 +/- 0.15	83.41 +/- 0.15	80.7 +/- 0.12
Cut9 :	82.99 +/- 0.15	82.87 +/- 0.15	82.63 +/- 0.15	82.67 +/- 0.15	82.96 +/- 0.15	83.41 +/- 0.15	80.7 +/- 0.12
Cut10:	75.17 +/- 0.16	74.9 +/- 0.17	74.93 +/- 0.17	75.13 +/- 0.16	75.38 +/- 0.16	76.01 +/- 0.16	73.49 +/- 0.12

bb	cc	99	tt	WW	zz	88
89.08 +/- 0.13	88.89 +/- 0.13	88.5 +/- 0.13	88.99 +/- 0.13	89 +/- 0.13	89.18 +/- 0.13	89.43 +/- 0.09
89.08 +/- 0.13	88.89 +/- 0.13	88.5 +/- 0.13	88.99 +/- 0.13	89 +/- 0.13	89.18 +/- 0.13	89.43 +/- 0.09
87.4 +/- 0.14	87.25 +/- 0.14	86.78 +/- 0.14	87.2 +/- 0.14	87.36 +/- 0.14	87.41 +/- 0.14	86.64 +/-0.098
85.15 +/- 0.14	85.01 +/- 0.14	84.51 +/- 0.14	84.84 +/- 0.14	85.1 +/- 0.14	85.09 +/- 0.14	84.34 +/- 0.1
85.04 +/- 0.14	84.92 +/- 0.15	84.43 +/- 0.15	84.75 +/- 0.14	84.99 +/- 0.14	84.99 +/- 0.14	84.26 +/- 0.1
84.99 +/- 0.14	84.84 +/- 0.15	84.36 +/- 0.15	84.29 +/- 0.15	84.89 +/- 0.14	84.88 +/- 0.14	82.54 +/- 0.11
84.99 +/- 0.14	84.84 +/- 0.15	84.36 +/- 0.15	84.2 +/- 0.15	84.88 +/- 0.14	84.74 +/- 0.14	82.46 +/- 0.11
78.76 +/- 0.16	78.69 +/- 0.16	78.12 +/- 0.16	78.21 +/- 0.16	78.67 +/- 0.16	78.78 +/- 0.16	76.45 +/- 0.11
78.56 +/- 0.16	78.44 +/- 0.16	77.84 +/- 0.16	77.97 +/- 0.16	78.43 +/- 0.16	78.52 +/- 0.16	76.19 +/- 0.11
78.56 +/- 0.16	78.44 +/- 0.16	77.84 +/- 0.16	77.97 +/- 0.16	78.43 +/- 0.16	78.52 +/- 0.16	76.19 +/- 0.11
69.82 +/- 0.17	69.55 +/- 0.17	69.33 +/- 0.17	69.57 +/- 0.17	69.74 +/- 0.17	70.11 +/- 0.17	68.07 +/- 0.12
	bb 89.08 +/- 0.13 89.08 +/- 0.13 87.4 +/- 0.14 85.15 +/- 0.14 85.04 +/- 0.14 84.99 +/- 0.14 84.99 +/- 0.14 78.76 +/- 0.16 78.56 +/- 0.16 69.82 +/- 0.17	bb cc 89.08 +/- 0.13 88.89 +/- 0.13 89.08 +/- 0.13 88.89 +/- 0.13 87.4 +/- 0.14 87.25 +/- 0.14 85.15 +/- 0.14 85.01 +/- 0.14 85.04 +/- 0.14 84.92 +/- 0.15 84.99 +/- 0.14 84.84 +/- 0.15 78.76 +/- 0.16 78.69 +/- 0.16 78.56 +/- 0.16 78.44 +/- 0.16 78.56 +/- 0.16 78.44 +/- 0.16 69.82 +/- 0.17 69.55 +/- 0.17	bb cc gg $89.08 +/- 0.13$ $88.89 +/- 0.13$ $88.5 +/- 0.13$ $89.08 +/- 0.13$ $88.89 +/- 0.13$ $88.5 +/- 0.13$ $89.08 +/- 0.13$ $88.89 +/- 0.13$ $88.5 +/- 0.13$ $87.4 +/- 0.14$ $87.25 +/- 0.14$ $86.78 +/- 0.14$ $85.15 +/- 0.14$ $85.01 +/- 0.14$ $86.78 +/- 0.14$ $85.04 +/- 0.14$ $84.92 +/- 0.15$ $84.43 +/- 0.15$ $84.99 +/- 0.14$ $84.84 +/- 0.15$ $84.36 +/- 0.15$ $84.99 +/- 0.14$ $84.84 +/- 0.15$ $84.36 +/- 0.15$ $78.76 +/- 0.16$ $78.69 +/- 0.16$ $78.12 +/- 0.16$ $78.56 +/- 0.16$ $78.44 +/- 0.16$ $77.84 +/- 0.16$ $78.56 +/- 0.16$ $78.44 +/- 0.16$ $77.84 +/- 0.16$ $69.82 +/- 0.17$ $69.55 +/- 0.17$ $69.33 +/- 0.17$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Replacing likelihood cut with TMVA based cut (Boosted decision tree)

- TMVA is more effective since it handles correlation between training variables
- BG is greatly reduced, especially in lower end
- Significance rise by 10 15%

Fitting range is narrowed to 110 – 155 GeV (before 100-160 GeV) Xsec and mass precisions rise (mainly for Zee channel)

Summary

Higgs recoil study using
 e+e- → ZH → I+I-H (I = μ / e)
 @ ECM = 250 , 350 , 500 GeV

replacing likelihood cut with TMVA based cut improves xsec and mass precisions, esp for Zee channel, even more improvement expected for higher ECM (optimization ongoing) < best-so-far Preliminary results > (both leptonic channels combined)

	250 GeV
xsecL	2.51%
xsecR	2.89%
massL (MeV)	34.2
massR (MeV)	39.2

- Investigation of Higgs decay mode dependence
- Bias seems to be resolved due to a bug discovered related to cosθmiss cut possibility of unknown decay modes have been investigated.
- Now we can really say syst. error due to mode bias is far below best achievable xsec precision
- Currently balancing bias with xsec precision

Higgs recoil paper in progress : first draft written, now updating with new improvements

Next Steps

further optimization of TMVA cut

- * add other variables , e.g. track angle of each lepton, angle between leptons (now only using Minv, $\cos \theta_Z$, Pt_dl)
- Converge to a set of TMVA based results for all ECM, channels by time of General Meeting (a total of 12 cases)

• improve efficiency of $\cos \theta$ miss cut

Find "protection" which yields best signal-BG separation for each scenario

finalize study of Higgs decay mode dependence

also need to include TMVA cut

revise Higgs recoil paper draft + write an internal KEK report on Higgs mode independence which is essential as a reference

BACKUP

From Junping-san's talk at ALCW2015

BR(inv) upper limit	P(e-,e+) =(-0.8,+0.3)	P(e-,e+) =(+0.8,-0.3)
250 fb ⁻¹ @ 250 GeV	0.86%	0.61%
330 fb ⁻¹ @ 350 GeV	1.23%	1.10%
500 fb ⁻¹ @ 500 GeV	2.39%	1.73%

Combined Higgs visible and invisible decay results

	250 GeV	350 GeV	500 GeV
xsecL	2.49%	3.08%	4.79%
xsecR	2.85%	3.47%	5.24%
massL [MeV]	33.8	86.5	456
massR [MeV]	38.2	97.5	540

	250 GeV			350 GeV			500 GeV		
	new	old	improvem ent	new	old	improvem ent	new	old	improvem ent
xsecL xsecR massl	2.45% 2.83% 33.8	2.74% 2.93% 37.9	10.58% 3.41% 10.82%	3.02% 3.43% 86.5	3.21% 3.55% 96.5	5.92% 3.38% 10.36%	4.64% 5.17% 456	5.01% 5.33% 448	7.39% 3.00% -1 79%
massR	38.2	38.4	0.52%	97.5	105	7.14%	540	536	-0.75%
xsecZmmL	2.98%	3.35%	11.04%	3.68%	3.90%	5.64%	6.09%	6.50%	6.31%
xsecZmmR	3.45%	3.57%	3.36%	4.17%	4.31%	3.25%	6.99%	7.27%	3.85%
xsecZeeL	4.30%	4.76%	9.66%	5.26%	5.63%	6.57%	7.25%	7.86%	7.76%
xsecZeeR	4.96%	5.14%	3.50%	6.04%	6.26%	3.51%	7.67%	7.86%	2.42%
massZmmL	36	40.4	10.89%	90.2	101	10.69%	479	468	-2.35%
massZmmR	40.5	40.5	0.00%	104	112	7.14%	580	572	-1.40%
massZeeL	97.4	109	10.64%	306	327	6.42%	1500	1540	2.60%
massZeeR	116	121	4.13%	281	296	5.07%	1480	1530	3.27%

 $Z \rightarrow \mu \mu$ channel

after requiring Evis (visible energy) > 10 GeV i.e. only visible Higgs Decay

- signal peak is apparently sharper
- II $\nu \ \nu$ (ZZWWMiix) BG reduced by a factor of 5

In order to maintain model independence, xsec errors need to be convoluted with results from invisible Higgs decay analysis (corresponding to BSM) https://agenda.linearcollider.org/event/6557/session/12/contribution/129/material/slides/0.pdf the contribution should be small

250 GeV : (- 0.8, + 0.3)

Higgs Decay Mode Bias

Problem#1 isolated lepton finder efficiency is lower for H→ gg, ww due to more overlap of jets from Higgs decay *already resolved thanks to new weights trained by Junping-san* used H→gg mode to train weight for TMVA (before: qqqq Now: gg mode suffers almost no bias, consistent efficiency with bb, cc

Problem#2

"wrong lepton pairing" for $H \rightarrow zz$, ww

• Even if leptons are from a non-prompt Z, they might satisfy Minv, but not Mrec leads to low efficiency due to cuts on Invariant mass and recoil mass in analysis stage

IMPROVEMENT: For Zmm channel : select best pair by minimizing chi² based on Mrec and Minv (c.f. before: select pair with Minv closest to Z mass)

Problem#3

Cos(\thetamiss) cut and Ptsum cut bias H\rightarrow \gamma\gamma , \tau\tau (tolerable ?)

• These cannot be sacrificed due to xsec precision and negligible after weigh by BR

Prevention of signal bias i.e. Higgs decay mode dependence

• the "traditional" dptbal (= |Pt,dl | - |Pt, γ |) cut for removing 2f BG (γ back-to back w.r.t. di-lepton) caused signal bias (esp. H $\rightarrow \tau \tau$, $\gamma \gamma$)

NEW #1 isolated photon finder: γ we look at have small cone energy) not from Higgs decay

NEW #2 Now use (instead of dptbal)

$$\overrightarrow{P}_{t,sum} = \left| \overrightarrow{P}_{t,\gamma} + \overrightarrow{P}_{t,dl} \right|$$

vector direction info singles out back to back events

 \sim 100 Higgs decay related γ events removed by dptbal cut !!

need more careful study of Higgs decay mode bias using high stat sample

lepton pairing mistake is reduced for ZZ, WW modes without additional bias on other modes

C1: correct

C2: two real leptons exist, but at least one wrong lepton

Pairing mistake

C3: both leptons wrong

- efficiency of H $\rightarrow \gamma \gamma$ rise by $\sim 12\%$ (68.4% \rightarrow 80.7%)
- efficiency of other modes rise by 0.5 1% also
- especially important : WW, ZZ no longer significantly biased (despite some "mistaken lepton pairing)

is the remaining bias this a worry ?

							$ H \rightarrow \gamma \gamma$
Eff. (%)	bb	corrected	gg	tt	WW	ZZ	88
Cut0 :	93.7 +/- 0.1	93.68 +/- 0.1	93.4 +/- 0.11	93.89 +/- 0.1	93.62 +/- 0.1	93.86 +/- 0.1	93.7 +/-0.077
Cut1 :	93.7 +/- 0.1	93.68 +/- 0.1	93.4 +/- 0.11	93.89 +/- 0.1	93.62 +/- 0.1	93.86 +/- 0.1	93.7 +/-0.077
Cut2 :	92.12 +/- 0.11	92.06 +/- 0.12	91.76 +/- 0.12	92.17 +/- 0.11	91.95 +/- 0.11	92.28 +/- 0.11	91.24 +/-0.089
Cut3 :	90.09 +/- 0.12	90.2 +/- 0.13	89.84 +/- 0.13	90.21 +/- 0.12	90.05 +/- 0.12	90.45 +/- 0.12	89.38 +/-0.095
Cut4 :	89.88 +/- 0.13	90.01 +/- 0.13	89.64 +/- 0.13	90.01 +/- 0.12	89.84 +/- 0.12	90.24 +/- 0.12	89.21 +/-0.096
Cut5 :	89.83 +/- 0.13	89.94 +/- 0.13	89.57 +/- 0.13	89.54 +/- 0.13	89.74 +/- 0.13	90.13 +/- 0.12	87.38 +/- 0.1
Cut6 :	89.83 +/- 0.13	89.94 +/- 0.13	89.57 +/- 0.13	89.54 +/- 0.13	89.74 +/- 0.13	90.13 +/- 0.12	87.38 +/- 0.1
Cut7 :	83.16 +/- 0.15	83.03 +/- 0.15	82.8 +/- 0.15	82.88 +/- 0.15	83.14 +/- 0.15	83.56 +/- 0.15	80.89 +/- 0.12
Cut8 :	82.99 +/- 0.15	82.87 +/- 0.15	82.63 +/- 0.15	82.68 +/- 0.15	82.96 +/- 0.15	83.41 +/- 0.15	80.71 +/- 0.12
Cut9 :	82.99 +/- 0.15	82.87 +/- 0.15	82.63 +/- 0.15	82.68 +/- 0.15	82.96 +/- 0.15	83.41 +/- 0.15	80.71 +/- 0.12
Cut10:	75.17 +/- 0.16	74.9 +/- 0.17	74.93 +/- 0.17	75.13 +/- 0.16	75.38 +/- 0.16	76.01 +/- 0.16	73.49 +/- 0.12
					Cut6 is cosor	niss	
					Cut6 is cosờr	niss	
Eff. (%)	bb	istako ^{cc}	qq	tt	Cut6 is cos∂r	niss	aa
Eff. (%) Cut0 :	bb 93.7 +/-0.079	istake ^{cc}	99 93.4 +/-0.081	tt 94.02 +/-0.077	Cut6 is cos∂r ୢ 94.04 +/-0.076	2Z 94.36 +/-0.074	aa 93.71 +/-0.066
Eff. (%) Cut0 : Cut1 :	bb 93.7 +/-0.079 93.7 +/-0.079	istake 93.69 +/- 0.08 93.69 +/- 0.08	99 93.4 +/-0.081 93.4 +/-0.081	tt 94.02 +/-0.077 93.99 +/-0.077	ww 94.04 +/−0.076 94.02 +/−0.076	2z 94.36 +/-0.074 94.15 +/-0.075	aa 93.71 +/-0.066 93.7 +/-0.066
Eff. (%) Cut0 : Cut1 : Cut2 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087	istake 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087	ww 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087	zz 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077
Eff. (%) Cut0 : Cut1 : Cut2 : Cut3 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097	istake 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097	ww 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097	22 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084
Eff. (%) Cut0 : Cut1 : Cut2 : Cut2 : Cut3 : Cut4 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098	istake 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.02 +/-0.098	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097 89.87 +/-0.097	WW 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097 89.53 +/-0.098	2Z 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097 89.53 +/-0.098	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084 89.17 +/-0.085
Eff. (%) Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 :	bb 93.7 +/-0.079 93.7 +/-0.087 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098 89.83 +/-0.098	istake 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.02 +/-0.098 89.94 +/-0.099	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099 89.57 +/- 0.1	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097 89.87 +/-0.097 89.39 +/-0.099	WW 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097 89.53 +/-0.098 89.43 +/-0.098	2Z 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097 89.53 +/-0.098 89.42 +/-0.099	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084 89.17 +/-0.085 87.34 +/-0.091
Eff. (%) Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut6 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098 89.83 +/-0.098 89.28 +/- 0.1	istake 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.02 +/-0.098 89.94 +/-0.099 89.58 +/- 0.1	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099 89.57 +/- 0.1 89.42 +/- 0.1	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097 89.87 +/-0.097 89.39 +/-0.099 88.64 +/- 0.1	ww 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097 89.53 +/-0.098 89.43 +/-0.098 88.66 +/- 0.1	2Z 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097 89.53 +/-0.098 89.42 +/-0.099 88.56 +/- 0.1	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084 89.17 +/-0.085 87.34 +/-0.091 73.67 +/- 0.12
Eff. (%) Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut6 : Cut7 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098 89.83 +/-0.098 89.28 +/- 0.1 82.75 +/- 0.12	cc 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.02 +/-0.098 89.94 +/-0.099 89.58 +/- 0.1 82.75 +/- 0.12	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099 89.57 +/- 0.1 89.42 +/- 0.1 82.67 +/- 0.12	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097 89.87 +/-0.097 89.39 +/-0.099 88.64 +/- 0.1 82.23 +/- 0.12	ww 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097 89.53 +/-0.098 89.43 +/-0.098 88.66 +/- 0.1 82.16 +/- 0.12	22 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097 89.53 +/-0.098 89.42 +/-0.099 88.56 +/- 0.1 82.28 +/- 0.12	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084 89.17 +/-0.085 87.34 +/-0.091 73.67 +/- 0.12 68.48 +/- 0.13
Eff. (%) Cut0 : Cut1 : Cut2 : Cut2 : Cut3 : Cut4 : Cut5 : Cut6 : Cut6 : Cut7 : Cut8 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098 89.83 +/-0.098 89.28 +/- 0.1 82.75 +/- 0.12 82.58 +/- 0.12	cc 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.02 +/-0.098 89.94 +/-0.099 89.58 +/- 0.1 82.75 +/- 0.12 82.59 +/- 0.12	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099 89.57 +/- 0.1 89.42 +/- 0.1 82.67 +/- 0.12 82.5 +/- 0.12	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097 89.87 +/-0.097 89.39 +/-0.099 88.64 +/- 0.1 82.23 +/- 0.12 82.02 +/- 0.12	WW 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097 89.53 +/-0.098 89.43 +/-0.098 88.66 +/- 0.1 82.16 +/- 0.12 81.98 +/- 0.12	22 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097 89.53 +/-0.098 89.42 +/-0.099 88.56 +/- 0.1 82.28 +/- 0.12 82.02 +/- 0.12	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084 89.17 +/-0.085 87.34 +/-0.091 73.67 +/- 0.12 68.48 +/- 0.13 68.38 +/- 0.13
Eff. (%) Cut0 : Cut1 : Cut2 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut6 : Cut7 : Cut8 : Cut8 : Cut9 :	bb 93.7 +/-0.079 93.7 +/-0.079 92.12 +/-0.087 90.09 +/-0.097 89.88 +/-0.098 89.83 +/-0.098 89.28 +/- 0.1 82.75 +/- 0.12 82.58 +/- 0.12	istake 93.69 +/- 0.08 93.69 +/- 0.08 92.06 +/-0.089 90.2 +/-0.098 90.02 +/-0.098 89.94 +/-0.099 89.58 +/- 0.1 82.75 +/- 0.12 82.59 +/- 0.12 82.59 +/- 0.12	99 93.4 +/-0.081 93.4 +/-0.081 91.76 +/- 0.09 89.84 +/-0.099 89.64 +/-0.099 89.57 +/- 0.1 89.42 +/- 0.1 82.67 +/- 0.12 82.5 +/- 0.12	tt 94.02 +/-0.077 93.99 +/-0.077 92.14 +/-0.087 90.06 +/-0.097 89.87 +/-0.097 89.39 +/-0.099 88.64 +/- 0.1 82.23 +/- 0.12 82.02 +/- 0.12	WW 94.04 +/-0.076 94.02 +/-0.076 91.96 +/-0.087 89.77 +/-0.097 89.53 +/-0.098 89.43 +/-0.098 88.66 +/- 0.1 82.16 +/- 0.12 81.98 +/- 0.12	2Z 94.36 +/-0.074 94.15 +/-0.075 91.99 +/-0.087 89.78 +/-0.097 89.53 +/-0.098 89.42 +/-0.099 88.56 +/- 0.1 82.28 +/- 0.12 82.02 +/- 0.12	aa 93.71 +/-0.066 93.7 +/-0.066 91.21 +/-0.077 89.35 +/-0.084 89.17 +/-0.085 87.34 +/-0.091 73.67 +/- 0.12 68.48 +/- 0.13 68.38 +/- 0.13

Performance of data selection

in fitting range 100-160 GeV

(-0.8,+0.3)		significance	Nsig	Nbg
250GeV	Zmm	18.3	1879	8692
	Zee	14.4	1502	9394
350GeV	Zmm	17.7	1462	5332
	Zee	14.1	1156	5597
500GeV	Zmm	11.1	626	2572
	Zee	8.7	439	2087
(+0.8,-0.3)		significance	Nsig	Nbg
250GeV	Zmm	19.7	1264	2834
	Zee	12.8	1096	6231
350GeV	Zmm	17	1002	2486
	Zee	12.7	602	1627
500GeV	Zmm	9.9	414	1339
	Zee	8.9	325	1003

- In general, significance is 250 > 350 > 500 GeV, Zmm > Zee
- right hand polarization: case by case:

(lower BG, but also smaller signal statistics)

Blue : wrong pair Red: right pair

Check lepton pairing mistake is reduced : Zmm channel								
250 GeV	bb	сс	ZZ	ww	tautau	gg	аа	
Total	100.00%	100%	100.00%	100.00%	100.00%	100%	100.00%	
C1	100.00%	100%	94.66%	98.13%	99.35%	100%	99.94%	
C2	0.00%	0	4.97%	1.46%	0.51%	0.00%	0.06%	
C3 OLD	0.00%	0	4.63%	0.46%	0.26%	0.00%	0.00%	
C5	0.00%	0	0.36%	0.41%	0.14%	0.00%	0.00%	
	0.00%	0	0.00%	0.00%	0.00%	0.00%	0.00%	
250 GeV	100.00%	100%	100.00%	100.00%	100.00%	100%	100.00%	
C1	100.00%	100%	95.47%	98.29%	99.41%	100%	99.91%	
C2	0.00%	0	4.26%	1.37%	0.49%	0.00%	0.09%	
C3 NEW	0.00%	0	3.85%	0.48%	0.28%	0.00%	0.00%	
C4	0.00%	0	0.27%	0.33%	0.10%	0.00%	0.00%	
63	0.00%	0	0.00%	0.00%	0.00%	0.00%	0.00%	
		C	1: correct					
	Pairing mis	stake C	2: two real lept	tons exist, but	t at least one	wrong lepton		
		С	3: both leptons	wrong				
		C	C4: only 1 real lepton					
		C	C5: no real lepton					

500 GeV

many challenges remaining: low statistics, low S/B ratio, ect...

Toy MC study

goal: test quality of fitting method

evaluate precision of xsec and recoil mass

method:

- generate MC events with 1000 x statistics according to fitted result of "real" data
- fit Toy events with same function : Kernel + polynomial
 → get signal yield, mass shift, and errors

recoil mass study using leptonic channes ECM = 250 GeV, 350 GeV, and 500 GeV

precise model-independent measurement of

absolute Higgs cross section and recoil mass

- σ_{zH} is a "must-have" for measurement of total Higgs width & couplings
- study impact of ECM and polarization
- contribute to the decision for ILC run scenario

originally study was focused on the new field of 350 GeV since many physics become important

this time, extended to all ECM and both leptonic channels

ILC sample used i	in analysis				
chanel	mH	ECM	L	Spin polarization	Detector simulation
e+e→Zh->µµh e+e→Zh->eeh	125 GeV	250 GeV 350 GeV 500 GeV	250 fb-1 333 fb-1 500 fb-1	P(e-,e+) = (-0.8,+0.3) (+0.8,-0.3)	Full ILD (ILD_01_v05 DBD ver.)

Signal signature

a pair of isolated energetic leptons (μ / e) with invariant mass (M_{inv}) close to Z mass

Dominant backgrounds

<u>Signatures</u>

- $e + e \rightarrow Z Z \rightarrow I + I X :$ forward
- $e+e- \rightarrow \gamma Z \rightarrow \gamma I+I-:$
- $e+e- \rightarrow WW \rightarrow I+I-vv: k$
- forward Z production angle
 - energetic ISR γ which balance dilepton pt
 - broad M_{inv} distr.

- data selection is based on signal / BG characteristics
- a final recoil mass window (100 160 GeV) is effective for cutting BG

Can precision can be slightly improved if we fit over a wider range ? assuming we can neglect the H^{*}→WW bump beyond 160 GeV

500GeV

8.36%

9.85%

6.37%

Zmm

Zee

Total

613

1510

568

572

1530

536

7.27%

7.86%

5.33%

34

on mass precision

- BG level is usually fixed for Toy MC (optimistic scenario)
- xsec error is about 10 % worse if we float BG (pessimistic scenario) not a big degradation since I fit recoil mass spectrum over a wide range

GOOD

Example:

Check lepton pairing mistake : Zee channel

250 GeV	bb	сс	zz	ww	tautau	gg	aa
Total elec	100.00%	100%	100.00%	100.00%	100.00%	100.00%	100.00%
C1	99.91%	100%	97.36%	96.89%	98.35%	99.92%	98.15%
C2	0.05%	0.03%	1.97%	2.16%	1.06%	0.01%	1.38%
C3	0.00%	0.00%	1.17%	0.01%	0.01%	0.00%	0.02%
C4	0.04%	0.02%	0.66%	0.89%	0.52%	0.01%	0.41%
C5	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%

C1	correc	+
\mathbf{O} I		L

airing mistake	
	C2: two real leptons exist, but at least one wrong lepton
	C3: both leptons wrong
	C4: only 1 real lepton
	C5: no real lepton

250 GeV Zmm left pol

