W mass direct measurement via Single-W process

Shinshu University K. Tsuchimoto

28th, August 2015 :—> Updates and current status of my study

Currently working on

- W mass systematic error from jet energy scale uncertainty
 - JES uncertainty may be very sensitive to the error of hadronic Z mass
 - how many available hadronic Zs ?
 - how much the error on m_Z ?

—> Check Z control samples to estimate N of available Zs

Z production processes

if some key particles could not be detected, those events are not accepted

- ee —> γZ (radiative return)
- ee —> eeZ (t-channel)
- ee —> vvZ (WW-fusion)
- ee —> ZZ (t-channel)

ee --> eeZ & yZ

	xsec @ 250GeV P(e-,e+)=(-1,1)	criteria	detector acceptance
ee —> eeZ	5061 fb ⁻¹	cosθe⁻ < 0.99 cosθe⁺ < 0.99	4.16%
ee —> γZ	33498 fb-1	cosθ _r < 0.99	82.31%

4

Summary and next

- Summary
 - some Z production processes have high cross sections
 - but some key particles actually go to beam pipe so that they cannot be detected
 - hence this detector acceptance affects the effective luminosities of those Z control samples
 - e.g. in the case of ee—>eeZ, acceptance is only $\sim 4\%$

• if $|\cos\theta_{e}| < 0.99 \&\& |\cos\theta_{e}| < 0.99$

- considering the selection efficiency of isolated electron and positron, it will be worth by a factor of ~0.7*0.7
- and the decay fraction ~0.7(hadronic)