Dark Current Studies in ILC Main Linac (update)

N.Solyak, A.Sukhanov, I.Tropin, Y.Eidelman FNAL, Sept.10, 2015

Motivation

- Halo particle and Dark current electrons in ML produce radiation, which affect:
 - Beamline components and cables inside of CM
 - electronics outside of CM in ML tunnel
 - personnel and electronics in service tunnel
- Extensive studies needed to investigate halo & dark current radiation.
 - Reduce thickness and cost of the radiation shield
 - Radiation doses for ML components

Recent studies of dark current:

- TESLA. V.Balandin et.al, TESLA report,2003
- Solyak et. al., Dark current midell for ILC ML, EPAC2008,
- T.Sanami, KEK, ALCW2014 Belgrad,.
- LCLS-II, M.Santana, DOE review Dec.2014
- JLAB 12GeV upgrade

Cross section of Kamaboko tunnel

Thickness of wall (1.5-3.5m) separating service and operational facility is determined by max beam losses in tunnel

Field Emission

- uniform distribution of emitters over the cavity surface
- Fowler-Nordheim model $W_{FN} = N_{FN}(\beta_{FN}E)^2 \exp(-B_{FN}\phi^{3/2}/\beta_{FN}E)$

 $\beta_{FN} = 100$ $B_{FN} = 6.83 \cdot 10^3$, $\phi = 4.2 \text{ eV}$, E in MV/m, I in Amp;

Norm factor is determined from the nominal DC value (50nA) exiting cavity

- Norm = 4.79e12 e-/s (taking into account RF duty factor 10Hz*1ms=0.01)

E=31.5 MV/m

Particle tracking in cavity (SLANS-2D)

ILC meeting Sept.10,2015

Particle Tracking in Cavity RF Field

- 92% of emitted particles are absorbed in the same cavity
- 4% of particles are captured into acceleration, exit cavity in the direction of the main beam into the next cavity
 - continue tracking of these particles through cavities down stream until they are lost or reach next quadrupole
- 4% of particles exit cavity up stream, in the direction opposite to the main beam, and enter previous cavity
 - continue tracking of these particles through cavities up stream until they are lost or reach previous quadrupole
- Add emission and tracking for all 26 cavities between quads

DC from Single Cavity

• Distribution of peak DC from single cavity along the string of 26 cavities

Tracking in 26 Cavities

• Losses from emission in all 26 cavities (50 nA/cavity)

ILC meeting Sept.10,2015

N.Solyak

Energy spectrum of lost partocles

E, MeV

Tracking in 26 Cavities

• Energy spectrum of particles entering quad section

LC meeting sept. 10, 2013

Losses in quad: Z distribution

Distribution of particles in Q

	Quad 15 GeV		Quad 125 GeV		Quad 250 GeV		
	N	Sum of FN weights	N	Sum of FN weights	N	Sum of FN weights	æ
Lost in quad	22842	7163.8 (13.2)	<mark> 64</mark> 6	34438.1 (63.6%)	162104	45802 (86.4%)	7
Exit to the right	177758	46972.2 (86.8%)	84139	19697.8 (36.4%)	<u>38494</u>	8332 (15.4%)	

Estimation of the prompt equivalent dose induced by dark current produced in section of the ILC ML

Two stage simulation

- Field emission simulation and tracking dark current electrons in cavities up to walls or entrance to quadrupoles done separately. Each particles information (coordinates, momentum etc.) saved to file.
- MARS simulation: continue trajectories written to the file, and calculate doses induced by dark current electrons.

MARS model

- Based on ROOT TGeo library.
- Built by means of the beam line builder implemented for MARS.
 - Extendable
 - For magnets: analytic approximation of magnetic fields is used inside aperture,
 2D field maps outside apertures (provided by Vladimir Kashikhin)
 - Can be exported to GDML format readable by Geant4 and Fluka.
- Representation of cryomodule and tunnel is converted from MARS "extended geometry" model developed in Japan (Sanami-san).
- Cavity model re-implemented to correspond to the model used in dark current simulations performed by Alexander Sukhanov. There is no field in cavities in current model.

MARS model based on ROOT Tgeo package: Top view (geometry based on T.Sanami input)

Length – 50,6m: 4 crymodules, 34 cavities, 2 quadrupoles Geometry can be easily can be extended to full length of linac

N.Solyak

MARS model: Front View

ILC meeting Sept.10,2015

N.Solyak

Cavity model

ROOT OpenGL viewer

MARS viewer

ILC meeting Sept.10,2015

N.Solyak

Total prompt dose, mSv/hr

End of ML (250GeV)

Total dose and dose induced by neutrons mSv/hr

Dose after quadrupole (250 GeV), mSv/hr

Dose after quadrupole (250GeV), mSv/h

Concrete wall thickness

New possibility: tracking secondary particles in cavity field in MARS:

Conclusion and Further studies

Based on preliminary results the concrete wall thickness between tunnels can be reduced from 3.5m to 1.5m.

Next steps:

Study possible dark current growing along the Linac

- Define saturation length for each quad settings (from 5GeV to 250 GeV) - *in progress*
- MARS simulation for worst cases.

Estimate effect of re-acceleration of secondary electrons in cavities.