

Preliminary results from the 160 InGrid test beam

Michael Lupberger University of Bonn

LCTPC-WP Meeting 10.09.2015

96 InGrid Module

3 modules: 1x 96, 2x 24 InGrids

Event display

Not aligned

× 💿

👭 🔏 ∑ Run files: /home/testbeam/TOS_SRS_quad_EventDisplay/RunData/ForBarbara

19 V. E. 3.8 Sec. 1 -Sec. Sec. 2000 4000 6000 8000 10000 Hits A

TOSView

Event display

Not aligned

II 🔏 ∑ Run files: /home/michael/Run_000087_150401_23-15-42

X 💿

4000 2000 6000 8000 10000 Hits 0

TOSView

Data cleaning

Dead chips, columns and pixel: occupancy plot

Cut in occupancy spectrum

Investigate "high count hits": almost all from 4 events

Data quality control

- Few pixel, which give high counts in less than 2 % of events
- \rightarrow reject events with too many "high count hits", 1 % occupancy cut on high count hits

Drift velocity

For a scan with corrected beam position

Comparison to simulation

Simulated TOA spectrum

Systematically too small (1.2 %) From which effect "cathode signal" Is generated \rightarrow needs further investigation

universität**bonn**

Reconstructed straight tracks

Michael Lupberger LCTPC-WP Meeting #227

16

Residuals

universität**bonn**

Systematic effect, expected

Modules aligned only as in CAD drawing! Chips on module: position Precisely measured with microscope

 \rightarrow try shifting/rotating modules

Residuals

Best result: both outer modules Rotated by 0.92°

Try field correction: Algorithm not suited, but gets a bit V better

Problem: Algorithm for 2013 data, where chips were in a row, beam along chips \rightarrow correction only in one direction. 2015: staggered chips \rightarrow would need 2D map

To use algorithm at all: hard cut on D0 to restrict beam on small area

Analysis: Cuts

none

12401

100

+ single tracks

4322

35

0 2400	-		1.00		
tu 2200					
2000					
1800	-				
1600					
1400	-				
1200	<u> </u>				
1000					
800					
600					
400					
200	-				
0	-0.1	-0.05	0	0.05	0.1
					λ [rad]
					(D)

X		
Entries 1600		
1400		
1200		
1000		
800	Ē 🚹	
600		
400	₣	

100 120 140

160 180 Z_o [mm]

200

20 40 60 80

Cut

Number of accepted tracks

Accepted tracks [%]

 $+\phi$

4224

34

+ number of hits

3418

28

Michael Lupberger LCTPC-WP Meeting #227

 $+ D_0$

3419

28

Track length: 50 cm including dead chips, gaps Corrected track length: 28.0 cm $\rightarrow \approx 109$ e/cm

Unresolved double tracks

Resolution rms/mean: (23.9 ± 0.7) % Resolution fit sigma/mean: (15.4 ± 0.7) %

Expected (Allison & Cobb): 14.06 %

→ try to find better measure

(a) Number of hits in slices along the track.

ProjectionY of binx=[99,108] [x=-202.0..-192.0]

(b) Projection of Figure 8.29a on the n/dx axis for a 10 mm wide region in a chip center fitted by a Landau distribution.

Figure 8.29: Number of hits along the track in 1 mm slices along the track.

Mean number of hits in intervals of 1 mm along the track with a resolution of (14.0 ± 0.3) % in the peak fitted by a Gaussian distribution.

Sejution 1200 Mean 10.95 RMS 2.129 Constant 1239 ± 28 1000 Mean fit 10.68 ± 0.02 Sigma fit 1.062 ± 0.015 800 600 400 200 20 30 40 50 60 10 Truncated mean electrons per mm

Truncated mean (reject 5% highest, 5 % lowest means) number of hits in intervals of 1 mm along the track with a resolution of (9.9 ± 0.5) % in the peak fitted by a Gaussian distribution.

Expected: 7.57 % \rightarrow 31 % off/room for improvement

Extrapolation to ILD:

Allison & Cobb, 1mm intervals: L_total \approx 1.5 m (full Pixel-TPC): 3.84 % L_pixel = 1.01 m (current module layout Pixel-TPC): 4.36 %

With current 31 % inefficiency: 4.81 / 5.71 %

Improvement: search for better measure, e.g. only central chip areas, harder truncation...

Curved track reco

New track finder: circle finder → see LCTPC-Pixel Meeting 23.07.2015 Reason: no working finder for pixelised data, checked: FHT, WindowedHT, HT+helix fit

Track finder method	Found	Partially found	Multiple found	Fake	Not found
Eye	109	0	0	0	0
CircleFinder	73	0	1	5	36
Hough transformation	54	31	15	11	9

Field distortions

universität**bonn**

Transverse spatial resolution

universität**bonn**

Longitudinal spatial resolution

80 MHz sampling frequency used \rightarrow should improve, does only bit Z field distortion dominate (?)

Momentum measurement

Beam spread: 6.36 %

Momentum measurement

Higher momenta: not correctly reconstructed. Fitter problem? Alignment?

Transverse spatial resolution

For different track angles

Error bars: not errors of residual rms (would be < dots because of large number of hits) Represent fluctuations of residuals for tracks

Died chips

Chips operational in the test beam

Green: ok, red: dead, blue: noisy, black: unconnected x: additionally after test beam

Thanks to all of you!

