Reconstruction of τ using impact parameters

e.g. e+ e-
$$\rightarrow$$
 (H \rightarrow τ τ) (Z \rightarrow μ μ)

Daniel Jeans U. Tokyo

September 2015

Some tau decay modes:

Simplest case $\sim 11\% \ \tau^+ \rightarrow \pi^+ \nu$

Largest BR ~25% $\tau^+ \rightarrow \pi^+ \pi^0 \nu$

Leptonic ~35% $\tau^+ \rightarrow (e/\mu)^+ \nu \nu$ two missing neutrinos \leftarrow limited information, ignore for now

We would ideally like to fully reconstruct the momentum of tau and its decay products

- \rightarrow cleaner selection of e.g. H $\rightarrow \tau^+ \tau^-$ (better mass resolution)
- \rightarrow use of τ spin correlations

However, τ always decays into at least one neutrino

 \rightarrow lose information

To optimally use events with taus, want to fully reconstruct the τ how to reconstruct the invisible neutrino momentum? <u>traditional method</u> e.g. LEP, BELLE, ...

traditional method

consider whole event e.g. $e^+e^- \rightarrow \tau^+\tau^-$

<u>assume</u> we know τ-τ centre-of-mass (CoM) τ-τ invariant mass

no precise IP knowledge

 $\pi + h^0$ event in τ-τ CoM cone angle depends on assumed τ energy boost measured momenta into CoM

τ-τ invariant mass → τ energy

for each τ of known energy: τ mass $\rightarrow \tau$ momentum at fixed angle to hadronic momentum (cone)

τ-τ are back-to-back in CoM: → 2 solutions for τ momentum (intersections of 2 cones) ⁵

traditional method Limitations: $in e+e- \rightarrow tau tau$, If there is unseen ISR, we know neither the CoM, nor the mass, of the τ - τ system

<u>in more general cases</u>, we may not want to assume e.g. τ-τ mass

ISR

at ILC, we will have a rather small beamspot, and a very precise vertex detector

can they help us?

another method makes "colinear approximation": assume v || to visible tau jet; balance event p_T (~OK if ts not back-to-back)

 h^0

h⁰

assume that π/τ trajectory is approx linear between PCA/IP and V OK since typical radius of curvature >> τ decay length

measured "track plane" defined by IP-PCA and Mom@PCA

(these two vectors are perpendicular for 3d PCA)

- τ momentum lies inside track plane (linear approx.)

 \rightarrow (h^o + v) momentum lies in track plane

 \rightarrow v momentum out of plane = - h^o momentum out of plane

$$v_{perp} = -h_{perp}^{0}$$

then parameterise v momentum inside plane:

x is unit vector parallel to hadronic momentum inside plane

y is unit vector in plane, perpendicular to \boldsymbol{x}

Q is magnitude of momentum in plane

 $v_{\parallel} = Q (x \cos \psi + y \sin \psi)$

We can then write the neutrino momentum as $v = Q (x \cos \psi + y \sin \psi) - h_{perp}^{0}$ two unknown parameters, Q and ψ

4-momentum of $\tau = \pi + h^0 + v$

invariant mass of τ is well-known, use to remove one param

- \rightarrow for each choice of ψ can calculate Q (in general 2 solutions)
- → calculate full kinematics of τ for any assumed ψ including decay length, lifetime

(in $\pi\nu$ decays, one Q solution gives a negative decay length, and can be rejected)

we have reduced v momentum to one parameter ψ

<u>HOW TO CHOOSE ψ ?</u>

consider whole event

e.g. $e^+ e^- \rightarrow (H \rightarrow \tau \tau) (Z \rightarrow \mu \mu)$

muon tracks used to define the IP (could also use known IP constraint)

P If there are no invisible particles recoiling against τ-τ system (except along beam-pipe), p_T of event must be balanced because of ISR/beamstrahlung,

Ļ

don't make requirements on p_7

h⁰

choose ψ values which

minimise the event's p_{τ}

ISR

(ideally $p_{\tau} = 0$)

 h^0

Test the method

e⁺ e⁻ → H μ⁺ μ⁻ events generated @ 250 GeV Whizard with CIRCE1 ISR/BS H → ττ; τ decayed by TAUOLA: either both π⁺ν or both π⁺π⁰ν (ρν) Full ILD simulation, DBD version ILD_v05_o1 Usual ILD reconstruction + GARLIC, no underlying event overlay Cheat matching of GARLIC/Pandora clusters to π⁰, and of π⁰ & π⁺ to τ apply π⁰ mass constraint to two photon system Use μ⁺ μ⁻ tracks to reconstruct IP: ~3μm precision

Track, π^{o} , ρ reconstruction

How does event p_{τ} depend on neutrino angle ψ chosen for two taus?

neutrino colinear with hadrons in track plane

Four possible solutions with small $p_{\rm T}$ easy to find minima using e.g. MINUIT

how to choose which one?

How does event p_{τ} depend on neutrino angle ψ chosen for two taus?

How does event p_{τ} depend on neutrino angle ψ chosen for two taus?

Find p_{τ} minimum in each quadrant:

choose smallest p_{τ} minimum with positive decay length

16

How well does it work?

How well does it work? Check the invariant mass of $\tau\tau$ system: should be 125 GeV

How well does it work? Check the invariant mass of $\tau\tau$ system: should be 125 GeV

How well does it work? Check the invariant mass of $\tau\tau$ system: should be 125 GeV

width of central peak $\sim 0.6 \text{ GeV}$ for $\pi^+\nu$ $\sim 1.1 \text{ GeV}$ for $\pi^+\pi^0\nu$

within (125 ± 10) GeV: ~ 95% of $\pi^+\nu$ ~ 89% of $\pi^+\pi^0\nu$ easily distinguished from Z

<u>Compare to methods not</u> <u>using impact parameter</u>

n.b. full ILD reco, μμΗ, pure tau decay modes, cheated γ,π,τ association

no cheating of association

<u>Summary</u>

reconstruction method for hadronic tau decays works well @ ILC

requires good IP reconstruction and impact parameter resolution of order 10 microns (interesting to exactly how good it needs to be)

insensitive boost along beam axis

- \rightarrow ISR, beamstrahlung OK \rightarrow HZ @ high energy OK
- → in principle, also applicable to hadron collider experiments if impact parameter resolution sufficiently good if IP can be measured

Reconstructs τ - τ mass to a precision of ~ 1 GeV

Paper submitted to NIM-A (arXiv:1507.01700)

Now working on removing cheating (associating tracks, clusters to taus) then use tau spin correlations to measure Higgs CP

electron, hadronic Z decays: p_{τ} less well measured

BACKUP and old slides

both $\tau \to \pi \, \nu$

Full reconstruction

both $\tau \ \rightarrow \ \pi \ \nu$

compare

 $e^+ e^- \rightarrow \mu \mu (H \rightarrow \tau \tau)$ to its major irreducible background $e^+ e^- \rightarrow \mu \mu \tau \tau$ (without H contribution: Z, gamma*)

28

arbitrary normalisation

<u>Summary</u>

method to fully reconstruct hadronic tau decays needs:

good vertex detector precise knowledge of IP no extra neutrinos in event no assumption on: tau-tau mass tau-tau centre-of-mass ISR/beamstrahlung

Demonstrated in tau+ \rightarrow pi+ nu now working on tau+ \rightarrow pi+ pi0 nu

Then proceed to full CP analysis

backup slides

Motivation:

the Higgs decays to ZZ , WW , $\tau^+\tau^-$, converted photons

are particularly interesting, because spin state of W, Z, τ , photon are reflected in the distribution of its decay products

This allows measurement of *e.g.* Higgs CP properties $H = \cos\varphi$ (CP+) + $\sin\varphi$ (CP-)

H → $\tau^+\tau^-$ ~ 6% for m_H = 125 GeV ~2 times larger than ZZ fermionic

2x2 Q solution combinations for one event

2x2 Q solution combinations for one event

<u>Unmeasured quantities</u>

ISR 2 x neutrino 3-momenta lost ISR photons

Kinematic constraints

overall 4-momentum conservation 2 x tau decay kinematics ← more details next

τ τ mass (if we assume H->τ τ) μ - μ mass not useful: resolution much better than Z width

We know that:

- endpoint of τ lies on pi- trajectory

We know that:

- endpoint of τ lies on pi- trajectory
- → neutrino momentum lies in plane defined by τ and pi- momenta

Let's test these ideas:

private production of e+e- \rightarrow Z H \rightarrow mu mu t+ t- events

Whizard 2.2.2, with ISR, beamstrahlung (also samples without) 250 GeV centre-of-mass eL pR beam polarisation

τ decay to pi-neutrino only Tauola 1.1.4, with correct spin correlations

simulated in ILD detector (Mokka) ILD_o1_v06 detector model

ilcsoft v01-17-04 reconstruction use tracks from MarlinTrkTracks collection PID by MC cheating (for now)

actually ISR + beamstrahlung

- total Energy

ISR properties

- invariant mass of sum of all ISR/BS photons ← zero if only on one side e.g. single ISR photon

the reconstructed muon tracks

Charged pion track parameters [in mm]

<u>d</u> and <u>p</u> are perpendicular in x-y, but not in 3d define <u>d'</u> = <u>p</u> x (<u>d</u> x <u>p</u>) \leftarrow inside p-d plane, perpendicular to p

neutrino momentum <u>q</u> lies in plane of <u>d</u> and <u>p</u> so we can write: $\underline{q} = |q| (\cos \psi \underline{p}^* + \sin \psi \underline{d}^{\prime*})$ where <u>x</u>* is a unit vector: <u>x</u> / |x|

We know that the invariant mass of (p + q) is m_{tau} so we can calculate the neutrino energy |q| for each value of ψ^3 For a given event, we can then see how the total event **pT** (muons, pions, neutrinos)

should be ~0, even with lost ISR

depends on the

angles ψ 1, ψ 2 (for the 2 taus)

For a given event, we can then see how the total event pT (muons, pions, neutrinos)

```
should be ~0, even with lost ISR
```

depends on the

```
angles \psi 1, \psi 2 (for the 2 taus)
```


 $\Psi = 0$ corresponds to neutrino colinear with pion needs large energy to make tau mass gives very large pt imbalance

 $\underline{q} = |q| (\cos \psi \underline{p}^* + \sin \psi \underline{d}^*)$

We can see local minima in each of the 4 quadrants Is the nu momentum on the d = +ve or -ve side of the pion momentum

color = pT (0.1 1 10 100) GeV⁷

0

0.2

chisqDet 0

0.2

-0.2

chisgDet 4

-0.2

chisgDet 9

0.2

0

-0.2

-0.2

0

0.2

0

0.2

-0.2

chisgDet 6

0.2

n

-0.2

A few more events:

by requiring pt-balance in the event [sum px = sum py = 0] it is possible (but somewhat messy) to calculate the angles Ψ due to finite resolution of measured quantities, a real solution is not always possible

More robust approach is to do a

standard minimisation [i.e. not a constrained fit]

to minimise the event pT

Minuit minimisation separately in each quadrant (no constraints needed)

 \rightarrow Four solutions

How to choose which one is the best?

Value at minimum \leftarrow pt as small as possible Comparison of |pz| and missing energy \leftarrow same, if 1 ISR photon invariant mass of 2 taus (if we assume presence of Higgs)

For now, define "best" solution as one with smallest value of pT + missing mass

If we have zero or one ISR photon, missing mass = 0

Check: Invariant mass of two τs, total pz (e.g. of ISR)

n.b. we have not used these in any part of the analysis

Compare fitted and true neutrino energies and directions

recoil mass (from muons) vs. reconstructed τ-τ mass

As expected, this method of mass reco not affected by ISR 53 unlike recoil mass

Only best solution

How well is ISR/BS energy and pZ reconstructed?

<u>Summary</u>

It's interesting to try to fully reconstruct τs: significant BR of Higgs they can act as "polarimeters"

 \rightarrow reconstruct their spin state by looking at their decay products

The ILC machine and detectors have great potential for tau reco: tiny beam spot high precision vertex detector

In hadronic tau decays of (τ τ + "X") processes we can calculate the tau neutrino momenta with good precision if we can measure pT of "X" If this is not possible, other approaches may be possible → make different assumptions about event

Kinematic fitting should give some improvements in precision take account of uncertainties in measured quantities tools are ~in hand

Things to do next:

- apply kinematic fit on the identified (best) solutions may improve the resolution
- apply to tau → rho nu decay mode
 I think (almost) same method can be used

Multi-prong decays should be easier Identify vertex → tau momentum direction Leptonic decays need more constraints maybe if only one tau decays leptonically, something can still be done with some extra assumptions

- apply to Higgs CP measurement

First approach:

Constrained kinematic fitting

Using MarlinKinFit package extended to use LCIO tracks (with full covariance matrix) a lot of patient help from Jenny & Benno List

neutrino momenta: unknown parameters muon & charged pion tracks: measured parameters (ISR treatment also possible, using expected ISR distribution)

Overall 4-momentum constraint Tau mass constraints Tau decay plane constraints

Adjust measured and un-measured paramteters to satisfy constraints, while minimising the "chisq" (deviations from measured values)

Choice of starting position for neutrino momentum turns out to be rather important here use randomly smeared direction around charged pion track

Value of constraints before fitting far from being satisfied

Units are GeV for momenta/masses cos(angle) for decay plane

Fit results

Only very small fraction of fits converge Those that do look somewhat OK, but not great...

If initial guess for neutrino momenta are smeared around MC val⊯e, it works much better ← need better initial estimates

Compare fitted and true neutrino energies and directions

Value of constraints after converged fitting

Constraints well satisfied: Fitter itself is working ~OK

Units are GeV for momenta/masses cos(angle) for decay plane It seems essential to have a good initial estimate of unknown quantities (neutrino momenta) before applying a constrained kinematic fit

Second approach:

Try to <u>calculate</u> the unknown quantities Ignore uncertainties on measured quantities

