W mass direct measurement via Single-W process

Shinshu University K. Tsuchimoto

18th, September 2015 :—> Updates and current status of my study

Currently working on

- Check Z control samples to estimate N of available Zs to estimate jet energy scale uncertainty
 - some generator level analyses
 - acceptance, selection efficiency, etc.
 - \cdot ee —> ZZ
 - · ee —> γZ
 - ee --> vvZ
 - $\cdot ee \longrightarrow eeZ$

Cross sections

no beamstruhlung, no ISR

x-sec/fb	P(e-, e+)	(-1, -1)	(-1, +1)	(+1, +1)	(+1, -1)
250GeV	ZZ	2856	—	1171	—
	γZ	26322	—	16853	—
	ννΖ	146.7	—	—	—
	eeZ	5170	4411	3728	4411
500GeV	ZZ	1323	—	543.5	—
	γZ	7394	—	4734	—
	ννΖ	1036	—	—	—
	eeZ	8478	8018	6126	8018

all Z decay modes are included

ZZ process

- control Z samples in ZZ are tagged by Z —> ee or $\mu\mu$
 - ZZ —> Ilqq (semileptonic mode, ~9% of all)
 - considering isolated lepton tag efficiency (~0.7/lepton)
 - require that the reconstructed leptonic mass must be around Z mass (80 < $M_{ee/\mu\mu}$ < 102 [GeV])

yZ process

- tag special γ
 - Z —> hadrons (69.91%)
 - detector acceptance assumed, $|\cos\theta_v| < 0.99$
 - find energetic γ and cut others(ISR photons)

vvZ process

simply require large missing energy due to 2 neutrinos

Есм	P(e-,e+)	all	tagged	efficiency
250GeV	(-1, +1)	292624	203453	69.5%
500GeV	(-1, +1)	291583	203500	69.8%

eeZ process

- try to tag 2 electrons
 - Z —> hadrons (69.91%)
 - detector acceptance assumed, $|\cos\theta_{e^{-},e^{+}}| < 0.99$

Есм	P(e-,e+)	all	accepted	efficiency
250GeV	(-1, +1)	293244	3605	1.23%
	(-1, -1)	292411	2897	0.99%
	(+1, -1)	293225	3441	1.17%
	(+1, +1)	293813	2998	1.02%
500GeV	(-1, +1)	292309	2447	0.84%
	(-1, -1)	292002	1572	0.54%
	(+1, -1)	292959	2225	0.76%
	(+1, +1)	293475	1604	0.55%

Available number of control samples

Есм	Process	N/fb at P(-0.8,+0.3)	Effective N at 500fb-1
250GeV	ZZ	1711.8	366358
	γZ	15988.3	4508701
	ννΖ	85.8	29816
	eeZ	4831.2	25742
500GeV	ZZ	793.0	164954
	γZ	4491.2	974590
	ννΖ	606.1	211529
	eeZ	8220.9	29898

Summary

- some Z production processes have high cross sections
- the number of available control Z samples shall reach to a few Mega at P(-0.8,+0.3), 500fb⁻¹
 - ~4.9M at 250GeV
 - ~1.4M at 500GeV
- ee—>γZ process is the most important due to its large cross sections and acceptance
- ee—>eeZ process has large cross section also, but effective number of available control samples in this process is not too much mainly due to its detector acceptance
- for the next; estimate jet energy scale uncertainty