

First results of the SDHCAL 2015 TB

CALICE Collaboration meeting at Kyushu University 7-9 March 2016

Imad Laktineh & Guillaume Garillot Institut de Physique Nucléaire de Lyon

Outline

• Homogenization of detector's response

- Simulation
 - · Data / Simulation comparison
 - · Geant4 10 FTF-based lists

• Homogenization of multiplicity by adjusting threshold values per ASIC

• Before calibration

10 15 20 25 30 35 40 45 50

• After calibration

- The multiplicity is higher along the welding line between the slabs
 - · Up to 2.6 locally
- Multiplicity seems more homogeneous after calibration

Average multiplicity for all layers
Before calibration
After calibration

- H2-SPS beam test in October 2015
 - π beam 10-80 GeV

• Narrower distributions after calibration

nHit

nHit 10 GeV

- Best agreement is obtained with GEANT4 9.6 FTF_BIC list with max deviation of -3% at 60 GeV
- All other tested lists underestimate the number of hits for E=10 GeV and E>30 GeV

- **GEANT4 10.01**: Weird behavior in FTF based physics lists
 - EM fraction distribution of the shower has a very weird shape
 - A lot of showers are ~100% EM
 - This causes a 'bump' in hits distribution
 - This bump is not present in data

Conclusion

- Homogenization of the multiplicity per ASIC seems to work well
- Other techniques of homogenization are planned for future beam tests (homogenization per pad using gain correction)
- Simulation using GEANT4 9.6 FTF_BIC is in quite good agreement with data
- GEANT4 10.01 FTF based lists seems to have problems