Test results of Cherenkov absorber for HCAL

8 March 2016 Iori Kanzaki Shinshu University CALICE Collaboration meeting at Kyushu University

Cherenkov HCAL for PFA

Dominant degradation of calorimetry comes from HCAL energy resolution affected by fluctuation of EM/hadron composition. → Separate EM component by detecting Cherenkov.

Cherenkov light detection

- Cherenkov detector (Lead Glass and PPD)
- Detecting muon is a challenging issue with the lead glass.

Because :

- Extremely small number of photons than scintillation
- Number of photons
 ~ 1/ λ²
- λ <360nm light absorbed in lead glass

 Muon detection with this detector ensures ability of this detector also to measure EM/hadron showers.

Lead Glass (LG) + MPPC

- Large refraction index of LG (n=1.8) makes total reflection angle larger
- It causes difficulty for light signal readout
- Need material with n>1.414 for readout
 - Optical grease or glue

Set up at H6 CERN

Set up at H6 CERN

- Lead Glass
 - DF6: 30×30×40 mm³, n = 1.8 X0 ~ 17 mm, 5.20 g/cm³
- PPD MPPC: 100 µm pitch, 3×3 mm²
- grease (OKEN6262A)
 n = 1.45
- glue (optical cement EJ500) n = 1.57
- Trigger counters
 PMT + scintillator : 30×40×10 mm³
- Read out by EASIROC Module

MPPC with grease

Cherenkov signal by muon (50 GeV)

- with grease
- dV = 1.1 [V]

Cherenkov signal by muon (50 GeV)

- with grease
- dV = 1.1 [V]

Cherenkov light with grease case :

• 8.3 ±0.1 p.e.

Bias Voltage dependence with muon beam

From the MPPC with grease data at CERN

Observed number of photo-electrons largely depends on bias voltage of the MPPC

Bias Voltage dependence test with LED system From the MPPC with grease data at shinshu

V_{bias} dependence of light yield is confirmed by LED system.

Bias Voltage dependence

Again comparison of Vbias dependence with grease

Summary

Result of Cherenkov light detection at H6 CERN

	dV	p. e.
grease	+1.1	8.3 ±0.1
glue	+1.3	14.3 ±0.1

- Good enough for muon detection ... this detector can work for shower measurement !
- Observed num. of photo-electrons depends on MPPC bias voltage. ... need to be careful, "p.e." is affected by MPPC condition.
- For fair comparison about grease and glue case, cosmic ray test is going.
- Measure the EM shower

On going cosmic ray test

- For fair comparison about grease and glue case
- using cosmic ray

4 cm

 MPPC with grease and MPPC with glue attached to upper part and under part of Lead glass.

Possible Further improvement Cerenkov light tends to have short wavelength (dN/dλ~1/λ²).

- Almost of glasses/plastics are not transparent for short wavelength photon.
- Idea to detect more Cerenkov photon -Shift wavelength longer by putting WLS material !
 - Candidate WLS : organic (Kuraray Y11, B3), inorganic quantum-dots (CdTl, etc)
- Polystyrene + organic WLS have proven this idea!

Possible Further improvement However for total measurement HCAL, we need heavy base material + inorganic WLS.

Test result of CdTl quantum-dot solvent

No improvement observed yet, however we will test more different types of inorganic WLS materials for dream of the total measurement HCAL !! 15

Back up

Kuraray WLS absorption & emission spectra

http://kuraraypsf.jp/psf/ws.html

Wavelength [nm]

CdTl quantum dots abs/emission spectra

Cherenkov signal by muon (50 GeV)

- with glue
- dV = 1.3 [V]

Cherenkov light with glue case :

• 14.3 ±0.1 p.e.

MPPC, grease, glue

 S12572 - 100C[ch0 : 4B000280, ch1 : 4B000278] Effective photosensitive area : 3mm×3mm Pixel pitch : 100µm Number of pixels : 900 Window refractive index : 1.59

• OKEN6262A

Refractive index : 1.453

• EJ500

Refractive index : 1.57

EASIROC and delay for external trigger EASIROC()

- Set HV : 69.26 [V]
- UDP biasV : 68.26 [V]
- InputDAC ch0 : 330, ch1 : 330
 (ch0 : dV = 1.1 [V], ch1 : dV = 1.3 [V])
- Shaping time : 25 [ns]
- Amp : 100 [fF]

<u>DELAY</u>

- DELAY module : 40 [ns]
- Lemo cable : 8 [ns]

Trigger signal

width : 60 [ns]

MPPC dV at H6 CERN

- V- ref V + (DAC 255) × 0.02
- <u>V: setHV 1.3</u>
- ref V : 2.5 or 4.5 [V]
- DAC : 256 ~ 511, ch0 : 330, ch1 : 330, 1bit = 0.02 [V]

- ch0: MPPC with grease (Vbd: 63.85 ±0.08 [V]) (69.26 - 1.3) - 4.5 + 1.52 = 64.98 [V] dV = 1.1 [V]
- ch1: MPPC with glue (Vbd: 63.73 ±0.07 [V])
 (69.26 1.3) 4.5 + 1.59 = 65.05 [V]

dV = 1.3 [V]

Lead glass

- DF6
- n = 1.8
- X0~17mm
- I nuclear interaction length = 17cm
- Density 5.20 g/cm3

from

performance of the VENUS lead-glass calorimeter at TRISTAN

- Radiation length 1.69 cm
- Critical energy 12.6 MeV
- Refractive index (rid) 1.805