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Introduction

 The previous analysis focused on 1D FEL theory. This resulted in a relatively simple 
and illuminating development which provides good insight into the physics of the FEL. 

 However, the neglected three-dimensional (3D) effects due to radiation diffraction,
e-beam emittance and undulator focusing can significantly affect the operation of the 
FEL, especially in the X-ray region. 

 Here, we provide a discussion of 3D effects, with special emphasis on the 
high-gain regime of the interaction.

 Most of the material is drawn from the FEL notes of Zhirong Huang, Kwang-Je Kim 
and Ryan Lindberg (see USPAS-2013 course materials for more details).



Transverse equations of motion

 In the 3D picture, the averaged electron trajectories are no longer parallel to the  
undulator axis. In fact, the electrons execute a slow, large-amplitude transverse    
oscillatory motion (betatron oscillation) upon which the fast, small-amplitude wiggle  
motion is superimposed.  

 As a result, the electron beam occupies a non-zero area in transverse phase space. 
A measure of this area is the transverse emittance, which (for uncoupled systems) is 
defined (say for the x-direction) as



 For linear focusing forces, emittance is an invariant of the motion (the shape of the
phase space picture changes but not its area). 

 The full magnetic field of a flat-pole undulator (i.e. the form that satisfies Maxwell’s 
equations) has a longitudinal component as well as a transverse one. Both field 
components depend on y. 

disregarded in 1D theory

𝑘𝑢 = 2𝜋/𝜆𝑢

𝜆𝑢 is the undulator period



 The equation of motion for an electron in the field of the undulator is given by

 The horizontal (x) component can be integrated to give an expression for the 
wiggle velocity:

 Using the above, the vertical (y) component of the equation of motion becomes

𝑲 =
𝒆𝑩𝟎

𝒎𝒄𝒌𝒖

undulator parameter



 Averaging over the wiggle motion yields a harmonic oscillator equation for the 
vertical motion (in the horizontal direction, there is no natural focusing so the 
motion is simply a drift):

 Using an undulator with a parabolically-shaped pole face introduces focusing in the 
horizontal (x) direction as well (see homework problems).



 Typically, natural focusing (~1/γ) is not sufficient in an XFEL and is supplemented by 
external focusing. The latter is usually implemented by means of a FODO lattice, with 
quadrupoles placed in between the undulator segments.

 In general, this results in z-dependent focusing forces.

 In the case of small phase advance per cell, a smooth focusing approximation is 
applicable. This results in a symmetric, constant focusing strength. 

𝒙 = 𝑥, 𝑦 is the 
transverse position vector



Longitudinal equations of motion

 Another major departure from the 1D picture is the inclusion of the radiation 
diffraction. For linearly polarized radiation (along the x direction), the electric field is

Slowly-varying Fourier amplitude
(note the transverse dependence)

 Scaled frequency/detuning variables
 The FEL effect occurs near the 

resonant frequency 𝜔1 so 𝜈~1

 As in 1D theory, the ponderomotive phase variable is defined as the sum of the 
undulator and the radiation phases:

arrival time averaged over the wiggle motion

𝑘1 = 2𝜋/𝜆1



 As far as the phase equation is concerned:

 the phase derivative is 

 the average z-velocity is given by

 define the energy deviation 𝜂 = (𝛾 − 𝛾𝑟)/𝛾𝑟 and use the FEL
resonance condition 𝜆1 = 𝜆𝑢(1 + 𝐾2/2)/2𝛾𝑟

2 as well as the 
expressions for transverse slopes  𝑑𝑥 𝑑𝑧 and  𝑑𝑦 𝑑𝑧

(we use the relations
1 − (𝑣𝑥

2+𝑣𝑦
2 + 𝑣𝑧

2)/𝑐2 = 1/𝛾2

𝑣𝑥 ≈ 𝑐𝑑𝑥/𝑑𝑧 etc )

 The final result is the relation

emittance term, introduced by 3D effects



 We also need to consider the energy exchange equation: 

 To average over the wiggle motion, we use:

 The definition of the phase 𝜃 [𝜃 = 𝑘𝑢 + 𝑘1 𝑧 − 𝑐𝑘1𝑡 + 𝑄𝑠𝑖𝑛(2𝑘𝑢𝑧) with 
𝑄 = 𝐾2/(4 + 2𝐾2)] in order to eliminate t 

 The Jacobi Anger identity  [ 𝑒𝑖𝑧 sin 𝜃 =  𝑛=−∞
∞ 𝐽𝑛( 𝑧)𝑒

𝑖𝑛𝜃 ]

 The end result is 

extract slowly varying part

JJ factor 



Summary of the 3D averaged equations of motion

 In the transverse plane, the electrons perform 
betatron oscillations, which can be described in 
the context of the smooth approximation.

 In the longitudinal dimension, one obtains the 3D 
generalization of the 1D pendulum equations.



Vlasov-Maxwell formalism

 The e-beam is described in terms of a distribution function 𝐹 = 𝐹 𝜃, 𝜂, 𝒙, 𝒑; 𝑧 in 
6D-phase space. In view of the importance of stochastic effects such as shot noise,
we use the Klimontovich distribution: 

 The interaction between the electron beam and the FEL radiation can be described 
in a self-consistent fashion in the framework of the Vlasov-Maxwell equations.

 The evolution of the distribution is governed by the continuity equation

𝑛𝑒: on-axis electron number density



 On the other hand, the coherent radiation field generated by the microbunching
satisfies a driven wave equation

 The charge/current densities can be expressed in terms of the distribution  
function F. This leads to closed set of self-consistent, nonlinear equations.

 Up to the linear, exponential-gain regime, a perturbation approach is applicable.  
As in the 1D case, this process involves:

 Decomposing the distribution function into a background distribution function  𝐹 and a 
small perturbation δ𝐹 i.e. 𝐹 =  𝐹 + 𝛿𝐹. We then introduce the Fourier amplitude 𝐹𝜈
through 𝐹𝜈 = (1/2𝜋)  𝑑𝜃(𝛿𝐹)𝑒−𝑖𝜈𝜃 and δ𝐹 =  𝑑𝜈𝐹𝜈𝑒

𝑖𝜈𝜃.

 Treating 𝐹𝜈 and 𝐸𝜈 as first order (small) quantities. 

𝐸𝑟 → 𝐸𝑥



 After some manipulation (which involves using the equations of motion), we obtain 
a linearized Vlasov equation:

 On the other hand, the background-or unperturbed-distribution evolves according 
to the zeroth-order Vlasov equation

 As expected, frequencies are not coupled in the linear regime. This greatly
simplifies the analysis as it allows us to concentrate on a single frequency 
𝜈 (which we do in what follows).



 To close the loop, we obtain a driven paraxial wave equation for the radiation field:  

extra 3D term due to 
radiation diffraction

 In terms of the distribution function amplitude, the driven paraxial becomes

 These linearized Vlasov-Maxwell equations accurately describe the FEL operation up 
to the onset of nonlinear, saturation effects.

current term now includes momentum integration



Eigenmode equation

 We introduce a set of convenient scaled quantities

 The linearized FEL equations become

phase derivative



 We have again introduced the Pierce-or FEL-parameter

 As far as the background distribution is concerned, we assume no z-dependence for
 𝑓0. Specifically, we select a Gaussian transverse and energy profile and a uniform

current profile.

𝜎𝑥 : rms beam size in x and y (round beam)
𝜎𝜂 : rms relative energy spread

𝐼 ∶ e-beam peak current
𝐼𝐴 ≈ 17 𝑘𝐴 (Alfven current)

𝑛𝑒 = 𝐼/(2𝜋𝜎𝑥
2𝑒𝑐)



 For such a z-independent case, we seek the self-similar, guided eigenmodes of 
the FEL. These are solutions of the form:   

 This distribution corresponds to a matched beam with a constant beam size.

 They are characterized by a constant 
growth rate 𝜇𝑙 and a z-independent 
radiation/density mode profile  𝐴𝑙/𝐹𝑙.

𝜎𝑥
′ = 𝜎𝑥𝑘𝛽 : rms angular divergence

𝜀𝑥 = 𝜎𝑥𝜎𝑥
′ : transverse emittance



 Substituting into the Vlasov-Maxwell (FEL) equations, we obtain two 
coupled relations for the growth rate and the mode amplitudes: 

 The second equation can be solved analytically in terms of 𝐹𝑙:

 Inserting this into the first 
equation yields a single 
relation for the mode growth 
rate and profile:



 Using the specific form of  𝑓0, we obtain a more explicit relation:

  𝜎𝑥 is a quantitative measure of the diffraction effect

 From the above equation, it follows that there are four basic dimensionless 
parameters that affect the growth rate:

(𝐿𝐺0 =
𝜆𝑢

4𝜋 3𝜌
is the 1D gain length)



  𝜎𝑥
 𝑘𝛽 is a measure of the emittance effect

(  𝛽 = 1/𝑘𝛽 is the average beta function)

  𝜎𝜂 represents the energy spread effect and gives the ratio of the 

energy spread-induced wavelength spread versus the bandwidth of the
FEL effect given by 𝜌

 The scaled frequency detuning parameter is 𝜎𝜈 = Δ𝜈/(2𝜌)



 Given the FEL eigenmodes, the general solution of the initial value problem can be 
constructed as their superposition, for instance

𝑎𝜈(𝒙, 𝑧) =  𝑙 𝑐𝑙𝐴𝑙(𝒙) 𝑒
−𝑖𝜇𝑙𝑧

 The constants 𝑐𝑙 can be calculated through overlap integrals involving the initial field 
and density modulation. 

 However, it needs to be emphasized that the FEL eigenmodes are (in general) 
not power-orthogonal. 

 The most important case is that of the high-gain regime, where a single mode 
(typically the fundamental or 00 mode) has the highest growth rate and dominates 

all the others [this happens when 𝑧 ≫ 𝐿𝐺 = 𝐿𝐺0 3/2𝐼𝑚(𝜇00)] 

𝑎𝜈(𝒙, 𝑧) ≈ 𝑐00𝐴00(𝒙)𝑒
−𝑖𝜇00𝑧



Parabolic model

 We consider the simplified case of the parallel beam, where focusing and 
emittance effects are negligible (𝑘𝛽 = 0). Moreover, we take 𝜎𝜂 = 0 :

 The mode equation then becomes

 U is typically a Gaussian. In the limit of small diffraction (  𝜎𝑥 ≫ 1), the radiation size 
is smaller than the e-beam size. Then U can be approximated by a parabola:



 The main advantage of this model is that it admits exact, analytical solutions:

 For  𝜎𝑥 → ∞, we recover the well-known 1D dispersion relation. For zero detuning

Δ𝜈 = 0, we also obtain the cubic relation 𝜇𝑙
3 = 1. 

extra 3D term due to diffraction

 For the fundamental mode (m=0,l=0), the radiation mode size is given by 

𝜎𝑟/𝜎𝑥 ∝  𝜎𝑥
−1/2





Variational solution

 Changing the momentum variable from  𝒑 to
the general mode equation becomes 

 The equation for azimuthal modes of the form
is  



 The integral kernel G is given by 

modified
Bessel function

 An exact numerical solution of the above equation can be obtained through an 
integral transform technique, which eventually leads to a matrix equation.

 A more flexible-and computationally faster-approximate solution can be derived 
through a variational method.  



 We construct the variational functional

 Inserting a function A yields a complex number 𝜇. If A is an actual mode profile, 
𝜇 is a mode growth rate. Moreover, it can be shown that a first order variation from 
the mode profile yields only a second order variation from the growth rate.

 In view of the exact solution for the parabolic model, we choose a trial function 
of the form 𝐴 = exp(−𝑤𝑟2) for the fundamental mode. A similar process can be 
devised for the higher order modes. 



 This yields the relation

 Using the stationary condition 
𝜕𝜇00

𝜕𝑤
= 0 , yields a second

relation which completes the variational solution:

 Through this procedure, we obtain the growth rate 𝜇 and the mode parameter 
w as functions of the detuning ∆𝜈. 



• LCLS fundamental mode growth rate
versus the scaled detuning  𝜈 = Δ𝜈/2𝜌

• optimum growth rate for negative detuning 
(wavelength longer than the resonant value)

LCLS fundamental mode intensity profile:
- from the exact solution (red)
- from the variational (blue)
- e-beam profile (purple)



Ming Xie’s fitting formula

 Using data from the variational solution, a fitting formula can be found that relates 
the optimized power gain length 𝐿𝐺 to the various scaled parameters of the FEL 
(Ming Xie, Nucl. Instr. A, 445, 59 (2000))



 Another fitting formula exists for the saturation power:

𝜌 is roughly equal to the power 
transformer ratio of the FEL 

 All the coefficients given above are positive. Thus, the fitting formula illustrates  
the increase of the gain length due to the various additional 3D effects.



Thank you for your attention!


