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Introduction

 The previous analysis focused on 1D FEL theory. This resulted in a relatively simple 
and illuminating development which provides good insight into the physics of the FEL. 

 However, the neglected three-dimensional (3D) effects due to radiation diffraction,
e-beam emittance and undulator focusing can significantly affect the operation of the 
FEL, especially in the X-ray region. 

 Here, we provide a discussion of 3D effects, with special emphasis on the 
high-gain regime of the interaction.

 Most of the material is drawn from the FEL notes of Zhirong Huang, Kwang-Je Kim 
and Ryan Lindberg (see USPAS-2013 course materials for more details).



Transverse equations of motion

 In the 3D picture, the averaged electron trajectories are no longer parallel to the  
undulator axis. In fact, the electrons execute a slow, large-amplitude transverse    
oscillatory motion (betatron oscillation) upon which the fast, small-amplitude wiggle  
motion is superimposed.  

 As a result, the electron beam occupies a non-zero area in transverse phase space. 
A measure of this area is the transverse emittance, which (for uncoupled systems) is 
defined (say for the x-direction) as



 For linear focusing forces, emittance is an invariant of the motion (the shape of the
phase space picture changes but not its area). 

 The full magnetic field of a flat-pole undulator (i.e. the form that satisfies Maxwell’s 
equations) has a longitudinal component as well as a transverse one. Both field 
components depend on y. 

disregarded in 1D theory

𝑘𝑢 = 2𝜋/𝜆𝑢

𝜆𝑢 is the undulator period



 The equation of motion for an electron in the field of the undulator is given by

 The horizontal (x) component can be integrated to give an expression for the 
wiggle velocity:

 Using the above, the vertical (y) component of the equation of motion becomes

𝑲 =
𝒆𝑩𝟎

𝒎𝒄𝒌𝒖

undulator parameter



 Averaging over the wiggle motion yields a harmonic oscillator equation for the 
vertical motion (in the horizontal direction, there is no natural focusing so the 
motion is simply a drift):

 Using an undulator with a parabolically-shaped pole face introduces focusing in the 
horizontal (x) direction as well (see homework problems).



 Typically, natural focusing (~1/γ) is not sufficient in an XFEL and is supplemented by 
external focusing. The latter is usually implemented by means of a FODO lattice, with 
quadrupoles placed in between the undulator segments.

 In general, this results in z-dependent focusing forces.

 In the case of small phase advance per cell, a smooth focusing approximation is 
applicable. This results in a symmetric, constant focusing strength. 

𝒙 = 𝑥, 𝑦 is the 
transverse position vector



Longitudinal equations of motion

 Another major departure from the 1D picture is the inclusion of the radiation 
diffraction. For linearly polarized radiation (along the x direction), the electric field is

Slowly-varying Fourier amplitude
(note the transverse dependence)

 Scaled frequency/detuning variables
 The FEL effect occurs near the 

resonant frequency 𝜔1 so 𝜈~1

 As in 1D theory, the ponderomotive phase variable is defined as the sum of the 
undulator and the radiation phases:

arrival time averaged over the wiggle motion

𝑘1 = 2𝜋/𝜆1



 As far as the phase equation is concerned:

 the phase derivative is 

 the average z-velocity is given by

 define the energy deviation 𝜂 = (𝛾 − 𝛾𝑟)/𝛾𝑟 and use the FEL
resonance condition 𝜆1 = 𝜆𝑢(1 + 𝐾2/2)/2𝛾𝑟

2 as well as the 
expressions for transverse slopes  𝑑𝑥 𝑑𝑧 and  𝑑𝑦 𝑑𝑧

(we use the relations
1 − (𝑣𝑥

2+𝑣𝑦
2 + 𝑣𝑧

2)/𝑐2 = 1/𝛾2

𝑣𝑥 ≈ 𝑐𝑑𝑥/𝑑𝑧 etc )

 The final result is the relation

emittance term, introduced by 3D effects



 We also need to consider the energy exchange equation: 

 To average over the wiggle motion, we use:

 The definition of the phase 𝜃 [𝜃 = 𝑘𝑢 + 𝑘1 𝑧 − 𝑐𝑘1𝑡 + 𝑄𝑠𝑖𝑛(2𝑘𝑢𝑧) with 
𝑄 = 𝐾2/(4 + 2𝐾2)] in order to eliminate t 

 The Jacobi Anger identity  [ 𝑒𝑖𝑧 sin 𝜃 =  𝑛=−∞
∞ 𝐽𝑛( 𝑧)𝑒

𝑖𝑛𝜃 ]

 The end result is 

extract slowly varying part

JJ factor 



Summary of the 3D averaged equations of motion

 In the transverse plane, the electrons perform 
betatron oscillations, which can be described in 
the context of the smooth approximation.

 In the longitudinal dimension, one obtains the 3D 
generalization of the 1D pendulum equations.



Vlasov-Maxwell formalism

 The e-beam is described in terms of a distribution function 𝐹 = 𝐹 𝜃, 𝜂, 𝒙, 𝒑; 𝑧 in 
6D-phase space. In view of the importance of stochastic effects such as shot noise,
we use the Klimontovich distribution: 

 The interaction between the electron beam and the FEL radiation can be described 
in a self-consistent fashion in the framework of the Vlasov-Maxwell equations.

 The evolution of the distribution is governed by the continuity equation

𝑛𝑒: on-axis electron number density



 On the other hand, the coherent radiation field generated by the microbunching
satisfies a driven wave equation

 The charge/current densities can be expressed in terms of the distribution  
function F. This leads to closed set of self-consistent, nonlinear equations.

 Up to the linear, exponential-gain regime, a perturbation approach is applicable.  
As in the 1D case, this process involves:

 Decomposing the distribution function into a background distribution function  𝐹 and a 
small perturbation δ𝐹 i.e. 𝐹 =  𝐹 + 𝛿𝐹. We then introduce the Fourier amplitude 𝐹𝜈
through 𝐹𝜈 = (1/2𝜋)  𝑑𝜃(𝛿𝐹)𝑒−𝑖𝜈𝜃 and δ𝐹 =  𝑑𝜈𝐹𝜈𝑒

𝑖𝜈𝜃.

 Treating 𝐹𝜈 and 𝐸𝜈 as first order (small) quantities. 

𝐸𝑟 → 𝐸𝑥



 After some manipulation (which involves using the equations of motion), we obtain 
a linearized Vlasov equation:

 On the other hand, the background-or unperturbed-distribution evolves according 
to the zeroth-order Vlasov equation

 As expected, frequencies are not coupled in the linear regime. This greatly
simplifies the analysis as it allows us to concentrate on a single frequency 
𝜈 (which we do in what follows).



 To close the loop, we obtain a driven paraxial wave equation for the radiation field:  

extra 3D term due to 
radiation diffraction

 In terms of the distribution function amplitude, the driven paraxial becomes

 These linearized Vlasov-Maxwell equations accurately describe the FEL operation up 
to the onset of nonlinear, saturation effects.

current term now includes momentum integration



Eigenmode equation

 We introduce a set of convenient scaled quantities

 The linearized FEL equations become

phase derivative



 We have again introduced the Pierce-or FEL-parameter

 As far as the background distribution is concerned, we assume no z-dependence for
 𝑓0. Specifically, we select a Gaussian transverse and energy profile and a uniform

current profile.

𝜎𝑥 : rms beam size in x and y (round beam)
𝜎𝜂 : rms relative energy spread

𝐼 ∶ e-beam peak current
𝐼𝐴 ≈ 17 𝑘𝐴 (Alfven current)

𝑛𝑒 = 𝐼/(2𝜋𝜎𝑥
2𝑒𝑐)



 For such a z-independent case, we seek the self-similar, guided eigenmodes of 
the FEL. These are solutions of the form:   

 This distribution corresponds to a matched beam with a constant beam size.

 They are characterized by a constant 
growth rate 𝜇𝑙 and a z-independent 
radiation/density mode profile  𝐴𝑙/𝐹𝑙.

𝜎𝑥
′ = 𝜎𝑥𝑘𝛽 : rms angular divergence

휀𝑥 = 𝜎𝑥𝜎𝑥
′ : transverse emittance



 Substituting into the Vlasov-Maxwell (FEL) equations, we obtain two 
coupled relations for the growth rate and the mode amplitudes: 

 The second equation can be solved analytically in terms of 𝐹𝑙:

 Inserting this into the first 
equation yields a single 
relation for the mode growth 
rate and profile:



 Using the specific form of  𝑓0, we obtain a more explicit relation:

  𝜎𝑥 is a quantitative measure of the diffraction effect

 From the above equation, it follows that there are four basic dimensionless 
parameters that affect the growth rate:

(𝐿𝐺0 =
𝜆𝑢

4𝜋 3𝜌
is the 1D gain length)



  𝜎𝑥
 𝑘𝛽 is a measure of the emittance effect

(  𝛽 = 1/𝑘𝛽 is the average beta function)

  𝜎𝜂 represents the energy spread effect and gives the ratio of the 

energy spread-induced wavelength spread versus the bandwidth of the
FEL effect given by 𝜌

 The scaled frequency detuning parameter is 𝜎𝜈 = Δ𝜈/(2𝜌)



 Given the FEL eigenmodes, the general solution of the initial value problem can be 
constructed as their superposition, for instance

𝑎𝜈(𝒙, 𝑧) =  𝑙 𝑐𝑙𝐴𝑙(𝒙) 𝑒
−𝑖𝜇𝑙𝑧

 The constants 𝑐𝑙 can be calculated through overlap integrals involving the initial field 
and density modulation. 

 However, it needs to be emphasized that the FEL eigenmodes are (in general) 
not power-orthogonal. 

 The most important case is that of the high-gain regime, where a single mode 
(typically the fundamental or 00 mode) has the highest growth rate and dominates 

all the others [this happens when 𝑧 ≫ 𝐿𝐺 = 𝐿𝐺0 3/2𝐼𝑚(𝜇00)] 

𝑎𝜈(𝒙, 𝑧) ≈ 𝑐00𝐴00(𝒙)𝑒
−𝑖𝜇00𝑧



Parabolic model

 We consider the simplified case of the parallel beam, where focusing and 
emittance effects are negligible (𝑘𝛽 = 0). Moreover, we take 𝜎𝜂 = 0 :

 The mode equation then becomes

 U is typically a Gaussian. In the limit of small diffraction (  𝜎𝑥 ≫ 1), the radiation size 
is smaller than the e-beam size. Then U can be approximated by a parabola:



 The main advantage of this model is that it admits exact, analytical solutions:

 For  𝜎𝑥 → ∞, we recover the well-known 1D dispersion relation. For zero detuning

Δ𝜈 = 0, we also obtain the cubic relation 𝜇𝑙
3 = 1. 

extra 3D term due to diffraction

 For the fundamental mode (m=0,l=0), the radiation mode size is given by 

𝜎𝑟/𝜎𝑥 ∝  𝜎𝑥
−1/2





Variational solution

 Changing the momentum variable from  𝒑 to
the general mode equation becomes 

 The equation for azimuthal modes of the form
is  



 The integral kernel G is given by 

modified
Bessel function

 An exact numerical solution of the above equation can be obtained through an 
integral transform technique, which eventually leads to a matrix equation.

 A more flexible-and computationally faster-approximate solution can be derived 
through a variational method.  



 We construct the variational functional

 Inserting a function A yields a complex number 𝜇. If A is an actual mode profile, 
𝜇 is a mode growth rate. Moreover, it can be shown that a first order variation from 
the mode profile yields only a second order variation from the growth rate.

 In view of the exact solution for the parabolic model, we choose a trial function 
of the form 𝐴 = exp(−𝑤𝑟2) for the fundamental mode. A similar process can be 
devised for the higher order modes. 



 This yields the relation

 Using the stationary condition 
𝜕𝜇00

𝜕𝑤
= 0 , yields a second

relation which completes the variational solution:

 Through this procedure, we obtain the growth rate 𝜇 and the mode parameter 
w as functions of the detuning ∆𝜈. 



• LCLS fundamental mode growth rate
versus the scaled detuning  𝜈 = Δ𝜈/2𝜌

• optimum growth rate for negative detuning 
(wavelength longer than the resonant value)

LCLS fundamental mode intensity profile:
- from the exact solution (red)
- from the variational (blue)
- e-beam profile (purple)



Ming Xie’s fitting formula

 Using data from the variational solution, a fitting formula can be found that relates 
the optimized power gain length 𝐿𝐺 to the various scaled parameters of the FEL 
(Ming Xie, Nucl. Instr. A, 445, 59 (2000))



 Another fitting formula exists for the saturation power:

𝜌 is roughly equal to the power 
transformer ratio of the FEL 

 All the coefficients given above are positive. Thus, the fitting formula illustrates  
the increase of the gain length due to the various additional 3D effects.



Thank you for your attention!


