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Introduction

The previous analysis focused on 1D FEL theory. This resulted in a relatively simple
and illuminating development which provides good insight into the physics of the FEL.

However, the neglected three-dimensional (3D) effects due to radiation diffraction,
e-beam emittance and undulator focusing can significantly affect the operation of the
FEL, especially in the X-ray region.

Here, we provide a discussion of 3D effects, with special emphasis on the
high-gain regime of the interaction.

Most of the material is drawn from the FEL notes of Zhirong Huang, Kwang-Je Kim
and Ryan Lindberg (see USPAS-2013 course materials for more details).



d

Transverse equations of motion

In the 3D picture, the averaged electron trajectories are no longer parallel to the
undulator axis. In fact, the electrons execute a slow, large-amplitude transverse
oscillatory motion (betatron oscillation) upon which the fast, small-amplitude wiggle
motion is superimposed.

As a result, the electron beam occupies a non-zero area in transverse phase space.
A measure of this area is the transverse emittance, which (for uncoupled systems) is
defined (say for the x-direction) as . _ \/@,z}(fz} — (z27)?
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d For linear focusing forces, emittance is an invariant of the motion (the shape of the
phase space picture changes but not its area).
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O The full magnetic field of a flat-pole undulator (i.e. the form that satisfies Maxwell’s
equations) has a longitudinal component as well as a transverse one. Both field
components depend ony.

B(x;2) = —Bycosh(k,y)sin(k,z)y — Bysinh(k,y) cos(k,z)z. k, = 2m/1,

| | I A, is the undulator period

disregarded in 1D theory



The equation of motion for an electron in the field of the undulator is given by
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The horizontal (x) component can be integrated to give an expression for the

dr dr/dt K
dz — dz/dt = 4

wiggle velocity: f
i

cos(kyz) cosh(kyy) + 2'(0),

Using the above, the vertical (y) component of the equation of motion becomes

cos?(k,z) sinh(k,y) cosh(k,y) . eB,
N2 " mck,
) cos?(ky2)y undulator parameter



d Averaging over the wiggle motion yields a harmonic oscillator equation for the

vertical motion (in the horizontal direction, there is no natural focusing so the
motion is simply a drift):

Kk 1

"= —k2yy, with k= —= = —.
Y 0Y; 0 N

d Using an undulator with a parabolically-shaped pole face introduces focusing in the
horizontal (x) direction as well (see homework problems).




O Typically, natural focusing (~1/y) is not sufficient in an XFEL and is supplemented by
external focusing. The latter is usually implemented by means of a FODO lattice, with
quadrupoles placed in between the undulator segments.

X =

B _By=-2  Br=2 .
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d In general, this results in z-dependent focusing forces.

[ In the case of small phase advance per cell, a smooth focusing approximation is
applicable. This results in a symmetric, constant focusing strength.

dr dp o
d P dz ke

x = (x,y) is the
transverse position vector



Longitudinal equations of motion

d  Another major departure from the 1D picture is the inclusion of the radiation
diffraction. For linearly polarized radiation (along the x direction), the electric field is

E, = E{;I:._ t: z}eﬂ“h_cﬂ + c.c. v=w/wi Ar=(rv-1)
— /dy eVkiEm) B (g 2)et VR 4 e, = Scaled frequency/detuning variables
I * The FEL effect occurs near the

. : : resonant frequency w; sov~1
Slowly-varying Fourier amplitude

(note the transverse dependence) |9E, /0z| < k1 |E, | ki =2m/2

[ Asin 1D theory, the ponderomotive phase variable is defined as the sum of the
undulator and the radiation phases:

0;(2) = (ku + K1)z arrival time averaged over the wiggle motion

K?
= ;IL’-H ki)z —eky [t:(2) — . ] Eku AR
(ky + k1)z — cky [J(z} (4 1 2KD) sin(2k,2) | ,




As far as the phase equation is concerned:
(we use the relations

1— (itvy +v7)/c? =1/y?

the ph rivative is
e phase de v, = cdx/dz etc)
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the average z-velocity is given by t_i ~ 1+

define the energy deviation n = (y — ¥,-)/y,- and use the FEL
resonance condition A; = 1,,(1 + K%/2)/2y? as well as the
expressions for transverse slopes dx/dz and dy/dz

d# k
The final result is the relation o= 2kym — % (p

2 + JE;*%;EE }

emittance term, introduced by 3D effects



d  We also need to consider the energy exchange equation:
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extract slowly varying part
d To average over the wiggle motion, we use:

ma

* The definition of the phase 8 [0 = (k, + k;)z — ck,t + Qsin(2k,z) with
Q = K?/(4 + 2K?)] in order to eliminate t

= The Jacobi Anger identity [ eZSin0 = Z%":_oo]n(z)eing ]
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(J The endresultis d—f = Y1 [drf E,(z:2)e" +cc. JJ factor
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Summary of the 3D averaged equations of motion

do k1,2 12 9
= 2k, — ?[P + kzx”),
d .
d_j = Y1 /dr; e E,(x;2) + c.c.,
dx d, .
= — . X i
d= p d= g
T .~ 1 ™ Inthetransverse plane, the electrons perform
W N N betatron oscillations, which can be described in

the context of the smooth approximation.

N\ Y " |nthe longitudinal dimension, one obtains the 3D
-5 e ] generalization of the 1D pendulum equations.




Vlasov-Maxwell formalism

(d The interaction between the electron beam and the FEL radiation can be described
in a self-consistent fashion in the framework of the Vlasov-Maxwell equations.

 The e-beam is described in terms of a distribution function F = F(8,n, x, p; z) in
6D-phase space. In view of the importance of stochastic effects such as shot noise,

we use the Klimontovich distribution:

F(0,n,x,p;z) = nEZéH 0;(z)]d[n —n;(2)]
Ne: on-axis electron number density X 0[x — x;(2)]0[p — p;(2)],

d The evolution of the distribution is governed by the continuity equation

dF dOF  dnoF  de OF  dp OF

. =0,
ff? ad d:* dn+d3 Eim+dz' dp




d On the other hand, the coherent radiation field generated by the microbunching
satisfies a driven wave equation
1?E, 1 dp. 107,

2
E il - :
vk, 2 Ot? .'_—TU( Ox " c2 Ot ) Er = bx

v' The charge/current densities can be expressed in terms of the distribution
function F. This leads to closed set of self-consistent, nonlinear equations.

d Up to the linear, exponential-gain regime, a perturbation approach is applicable.
As in the 1D case, this process involves:

v Decomposing the distribution function into a background distribution function F and a
small perturbation 0F i.e. F = F + §F. We then introduce the Fourier amplitude F,

through E, = (1/2m) [ d8(8F)e~"% and 8F = [ dvF,e™".

v' Treating F, and E,, as first order (small) quantities.



d After some manipulation (which involves using the equations of motion), we obtain
a linearized Vlasov equation:
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d As expected, frequencies are not coupled in the linear regime. This greatly
simplifies the analysis as it allows us to concentrate on a single frequency
v (which we do in what follows).

(d On the other hand, the background-or unperturbed-distribution evolves according
to the zeroth-order Vlasov equation

o s . s,
— 4+p-——k%x- —}F =0
{:':i',::' TP ar s :':?p}



To close the loop, we obtain a driven paraxial wave equation for the radiation field:

- 2 a Ne .
( 0 + iAvk, + Vi ) E,(x;2) = —ngb—lze_“’giiﬂﬁ[m — x;(2)]

az 2ik4 2 £ 1
I}=
|_|_|
extra 3D term due to x2 = eK[1]] /20,

radiation diffraction

In terms of the distribution function amplitude, the driven paraxial becomes

Q

d
Avk,
(dz_l_? Y +22L

) E, = —yaon, /dpdn E,

current term now includes momentum integration

These linearized Vlasov-Maxwell equations accurately describe the FEL operation up
to the onset of nonlinear, saturation effects.



Eigenmode equation

(d We introduce a set of convenient scaled quantities

. . n Y1 eK [JJ]
:2 k‘u ' = —. p = 7 L = F L.
Z PRyZ T o a Qku,ﬂEE 4ﬁr‘,?mﬂ3kung .
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We have again introduced the Pierce-or FEL-parameter

p= [ﬂ'ejﬁfl;’(?]”g (e K?[JI]*n, )l""‘?'

(2ky)? \ 32607 ek ) I : e-beam peak current
B K] 2 )2 1/3 14 = 17 kA (Alfven current)
_ M
|81, (1 + KE;'E) 2mo2

As far as the background distribution is concerned, we assume no z-dependence for

fo- Specifically, we select a Gaussian transverse and energy profile and a uniform
current profile.

A 23 A
_ fey o 1 p*+ kax 1 &
D 1282y B . B B 5
folp™ +kzx”) = - : CEP( E'f:%af‘rﬁ ) \/Eﬁﬂ DKP( 2&3 ne =1/(2mo5ec)

0, : rms beam size in x and y (round beam)
g, : rms relative energy spread



d This distribution corresponds to a matched beam with a constant beam size.

Beam envelope

0y = 0xkp : rms angular divergence
£, = 0,0y : transverse emittance

d  For such a z-independent case, we seek the self-similar, guided eigenmodes of
the FEL. These are solutions of the form:

o _ a, (&5 2) _ __w&[ Ay (@) ]
= | =

(7, 2, P, 2 Fe(, p, 1)
[ They are characterized by a constant ~___ P Optical guiding
. Radiation -
growth rate y; and a z-independent orofile _

radiation/density mode profile A;/F;. /?H;ﬂeighh > s

length Zp Diffraction without guiding



(d Substituting into the Vlasov-Maxwell (FEL) equations, we obtain two
coupled relations for the growth rate and the mode amplitudes:

peAp + ( Sv l‘?l) Ag +i [dpdn Fy
= (.
e Fe + ?'Af%'% - { v+ (p fm f»;-,i’ .'f?p) } Fe

 The second equation can be solved analytically in terms of F;:

Fe= ii{;} [dr Ay(&,)eitoror, &4 (1) = & cos(kg)+(p/ k) sin(ks7)
O Inserting this into the first (M _ f % 1) Ay (2)
equation yields a single % 0
relation for the .mode growth _ /dﬁdﬁ [ﬂgT e VO—pe)T dﬁ:‘ Ag(d) = 0.
rate and profile: i



d Using the specific form offo, we obtain a more explicit relation:

0

Av | . 1 ~2, 20y
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X [d}i’r Alz (2, p, T)] exp [—

d From the above equation, it follows that there are four basic dimensionless
parameters that affect the growth rate:

" 0§, is a quantitative measure of the diffraction effect

2roldmp 2 Zp
M A V3Leo'

_._-:l
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6= Zp =m0,/ A
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Au . .
(Lgo = puvpl the 1D gain length)



. 6xkﬁ is @ measure of the emittance effect

AL _
\ -jG €z < 1. (8 = 1/kpg is the average beta function)
1/

[ﬁrf}g}g =
" 0y, represents the energy spread effect and gives the ratio of the

energy spread-induced wavelength spread versus the bandwidth of the
FEL effect given by p

ﬁ' B i“."lr' i“.}nll — 9 ﬁ&}q LG'.[]. <1
n_n."p 2}‘11‘5’_ v A Ay -

* The scaled frequency detuning parameteris g, = Av/(2p)
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d Given the FEL eigenmodes, the general solution of the initial value problem can be
constructed as their superposition, for instance

a,(x,2) = X, A (x) e 2

 The constants c; can be calculated through overlap integrals involving the initial field
and density modulation.

(d However, it needs to be emphasized that the FEL eigenmodes are (in general)
not power-orthogonal.

 The most important case is that of the high-gain regime, where a single mode
(typically the fundamental or 00 mode) has the highest growth rate and dominates

all the others [this happens when z > L = LoV3/2Im(ugo)]

a, (x,z) = coohgo(x)eHoo?



Parabolic model

We consider the simplified case of the parallel beam, where focusing and
emittance effects are negligible (kg = 0). Moreover, we take g, = 0 :

foli, &, p) = 5(0)d(p)U ().

The mode equation then becomes

1 (10 (,0 1 92 Av U{-' )
2 L or ( dr) " _QJ—G*Q] Ael2) + [HF_ 20 ,u Ad®) =

U is typically a Gaussian. In the limit of small diffraction (6, > 1), the radiation size
is smaller than the e-beam size. Then U can be approximated by a parabola:

_1,1'2 'I'|2

262 202

U(d) =




d The main advantage of this model is that it admits exact, analytical solutions:

.AE ml,"li "“-‘2 'hi
T : e — Lm - *
Ae(Z) = Agm(F)e Atm(F) (Hfﬁ.r) ‘ (;tfﬁr) m{p( ?ufﬁx)

: A :
,u,f (;55—2—;) —1= EF(25+HI+1) for £ >0, f e Z and m € Z.

extra 3D term due to diffraction

d For 6, — oo, we recover the well-known 1D dispersion relation. For zero detuning
Av = 0, we also obtain the cubic relation u; = 1.

d  For the fundamental mode (m=0,|=0), the radiation mode size is given by

2
2 fe|” Oz ~—1/2

ol = — _ 0y /0y X 0,
23(1e) v 2pk1 Ky T
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Figure 5.9: Transverse mode structure for the parabolic beam. (a) Growth
rate as a function of the inverse of the scaled electron beam size, maximized
with respect to Av. All modes approach the 1D growth rate v/3/2 ~ 0.866
as 0, — oo, and decrease as the beam size decreases. The gain of the lowest
order Gaussian mode Gpg decreases the slowest, so that at finite beam size
it tends to dominate the other transverse modes. In panel (b) we plot the
intensity profile of the three lowest order modes, each being normalized to
its peak value with &, = 1. The mode shapes look quite similar to those
shown in Fig. 5.10, which were numerically computed for the LCLS.



Variational solution

-~

O Changing the momentum variable from p to &' = & cns{fé_,gfr) + ;Li sin{fé_,gfr},

the general mode equation becomes 8

A —&y 202 /2 —duT
(,u,———lr ?E)A{x [d’r [dt A(2'
2p 2762 sin? ch-’r}

X exp|—

1+ zljcr T a2+ 32— 23 - g EDE{E‘_.HT} _0
262 sin’ {kg’r) |

3 The equation for azimuthal modes of the form A(&) = A,,(R)e™? R =

Ed _
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d The integral kernel G is given by

—_—

i

0
Gm{R- Hr]‘ — [dT G Im
: s111

RR'(1 + ik262T) ma(i;-.jrj.]

sin? (Jf:..ji“)

(kaT)

5272 (R2+ R™*)(1 + ffc%frﬁr}]

X exp | — — TUT — -
: [ r[ 2::'1112{;;_3?}

In(€) =

QF
2 v Bessel function
0

d An exact numerical solution of the above equation can be obtained through an
integral transform technique, which eventually leads to a matrix equation.

A more flexible-and computationally faster-approximate solution can be derived
through a variational method.



d We construct the variational functional

d

T[A] = / RdR { 2; [d’“lg}%m] - [f..:. - ‘é‘;’ _ ?;3] AEJR}}
0 ‘ |

+ /Rd}? /R’dﬂ’ G(R,R")A,.(R)A,,(R) =10
0 0

Inserting a function A yields a complex number u. If A is an actual mode profile,
1 is a mode growth rate. Moreover, it can be shown that a first order variation from
the mode profile yields only a second order variation from the growth rate.

In view of the exact solution for the parabolic model, we choose a trial function
of the form A = exp(—wr?) for the fundamental mode. A similar process can be
devised for the higher order modes.



oo — Av/2p 1

d This yields the relation

dw 462
-r'-1 [2—ippoT
(1 + ik20 ;3 ) + 2u'] — 4w? cos?(kgT)
dloo

d Using the stationary condition = (0 , yields a second

ow
relation which completes the variational solution:

0 . )
oo — Av/2p /’ [4[1 + ?'I;%.“L} 1+ 8 sin? [Lj-, j] —&272 [2—ipgoT

A2 { [(1 + ?LE 2r) + E-u;]g — 4uw? cf.::usf[i’-_-sﬁ’:' }2

Y|

d  Through this procedure, we obtain the growth rate u and the mode parameter
w as functions of the detuning Av.



htensiy

e LCLS fundamental mode growth rate
versus the scaled detuning v = Av/2p

e optimum growth rate for negative detuning
(wavelength longer than the resonant value)

LCLS fundamental mode intensity profile:
- from the exact solution (red)

- from the variational (blue)

- e-beam profile (purple)



Ming Xie’s fitting formula

d Using data from the variational solution, a fitting formula can be found that relates
the optimized power gain length L. to the various scaled parameters of the FEL
(Ming Xie, Nucl. Instr. A, 445, 59 (2000))

V3/2

I(poo)

Lao = Au/(4/3mp)

L = Lao =Leo(14+A) A=anP + asne* + asns® + amn*n*

~
@18 219

Leo 1 . .
g = _ = - diffraction parameter,
= ko 2 2352 ¥
Leo 2 .
e =2 e = ——k252 angular spread parameter,
My = 4?]'@0 _ O energy spread parameter
! VG |



ay; = 0.45, as = 0.57, ag = (.55, a4 = 1.6, as = 3,
ag = 2, ay = 0.35, ag = 2.9, ag = 2.4, aip = 51,
ajp = 0.95, o = 3. a3 = 5.4, ayq = 0.7, ai; = 1.9,
a1 = 1140, ayy = 2.2 aig = 2.9, a9 = 3.2.

[ All the coefficients given above are positive. Thus, the fitting formula illustrates
the increase of the gain length due to the various additional 3D effects.

d  Another fitting formula exists for the saturation power:

Lo pF
(14 A)27 7 p is roughly equal to the power

transformer ratio of the FEL

Len

2
Po.i~=16|-— VEAIT —
sat (Lf_“; ) pB

Poeam[TW] = 7,mc2[Ce V]I [KA]



Thank you for your attention!



