Homework Set 2 solutions (10/31/15), C1 class (X-Ray Free
Electron Laser Theory), 9th ILC school, 2015

1 Parabolic model

For a trial solution of the form

$$
A(\hat{\mathbf{x}})=\exp \left(-a \hat{r}^{2}\right)
$$

we have

$$
\begin{aligned}
& \frac{1}{2 \hat{r}} \frac{\partial}{\partial \hat{r}}\left(\hat{r} \frac{\partial A}{\partial \hat{r}}\right)=\frac{1}{2 \hat{r}} \frac{\partial}{\partial \hat{r}}\left[-2 a \hat{r}^{2} \exp \left(-a \hat{r}^{2}\right)\right] \\
& =-\frac{a}{\hat{r}} \frac{\partial}{\partial \hat{r}}\left[\hat{r}^{2} \exp \left(-a \hat{r}^{2}\right)\right]=-\frac{a}{\hat{r}}\left[2 \hat{r}-2 a \hat{r}^{3}\right] \exp \left(-a \hat{r}^{2}\right) \\
& =-\frac{a}{\hat{r}}\left[2 \hat{r}-2 a \hat{r}^{3}\right] \exp \left(-a \hat{r}^{2}\right)=-2 a\left[1-a \hat{r}^{2}\right] \exp \left(-a \hat{r}^{2}\right)
\end{aligned}
$$

so the mode equation becomes

$$
\begin{aligned}
& \frac{1}{2 \hat{r}} \frac{\partial}{\partial \hat{r}}\left(\hat{r} \frac{\partial}{\partial \hat{r}}\right) A(\hat{\mathbf{x}})+\left[\mu_{l}-\frac{\Delta \nu}{2 \rho}-\frac{U(\hat{\mathbf{x}})}{\mu_{l}^{2}}\right] A(\hat{\mathbf{x}}) \\
& =-2 a\left[1-a \hat{r}^{2}\right] \exp \left(-a \hat{r}^{2}\right)-\frac{1}{\mu_{l}^{2}}\left(1-\frac{\hat{r}^{2}}{2 \hat{\sigma}_{x}^{2}}\right) \exp \left(-a \hat{r}^{2}\right) \\
& +\left(\mu_{l}-\frac{\Delta \nu}{2 \rho}\right) \exp \left(-a \hat{r}^{2}\right)=0
\end{aligned}
$$

Collecting the powers of \hat{r} on the LHS and equating to zero yields two equations:

$$
\mu_{l}-\frac{\Delta \nu}{2 \rho}-\frac{1}{\mu_{l}^{2}}-2 a=0
$$

and

$$
2 a^{2}+\frac{1}{2 \hat{\sigma}_{x}^{2} \mu_{l}^{2}}=0 \rightarrow a^{2}=-\frac{1}{4 \hat{\sigma}_{x}^{2} \mu_{l}^{2}}
$$

The latter relation yields

$$
a= \pm \frac{i}{2 \hat{\sigma}_{x} \mu_{l}}= \pm \frac{i \mu_{l}^{*}}{2 \hat{\sigma}_{x}\left|\mu_{l}\right|^{2}}
$$

Since

$$
\operatorname{Re}[a]= \pm \frac{\operatorname{Im}\left[\mu_{l}\right]}{2 \hat{\sigma}_{x}\left|\mu_{l}\right|^{2}}
$$

we choose the plus sign since we need the real part of a to be positive (recall that the imaginary part of μ_{l} is positive for a growing mode). Thus, we have

$$
a=+\frac{i}{2 \hat{\sigma}_{x} \mu_{l}}
$$

and the dispersion relation becomes

$$
\mu_{l}-\frac{\Delta \nu}{2 \rho}-\frac{1}{\mu_{l}^{2}}=2 a=\frac{i}{\hat{\sigma}_{x} \mu_{l}}
$$

or

$$
\left(\mu_{l}-\frac{\Delta \nu}{2 \rho}\right) \mu_{l}^{2}-1=\frac{i \mu_{l}}{\hat{\sigma}_{x}}
$$

2 LCLS 3D optimization

The results for the optimization curves are shown below:

Figure 1: Gain length.

Figure 2: Saturation power.
The optimum beta is about 10 m , resulting in a minimum gain length of 2.3 m and a saturation power of about 30 GW .

