Problems Linac Basics

- 1) Calculate the relative longitudinal motion of two electrons with an energy of about $9 \, \mathrm{GeV}$ and a difference of 3% over a distance of $21 \, \mathrm{km}$.
- 2) A superconducting linac consists of cavities with a length of $L=1.1\,\mathrm{m}$ and an external coupling of $Q_{ext}=10^5$. It is operated in matched conditions (no reflected power) with a gradient $G_0=20~\mathrm{MV/m}$ and a beam current of $I_0=10~\mathrm{mA}$.
- a) What is the input power per cavity *P* required?
- b) The management wants to double the beam current but keep the gradient the same. In order to stay matched, which input power P_{new} does one need? Which other parameter needs to be changed and how?
- 3) A harmonic oscillator is a special case of Hill's equation: $K(s) = K_0 > 0$. Show that in this case $\beta(s) = \beta_0$ fullfils Hill's equation (using the differential equation for the evolution of the beta-function). Which value has β_0 ?
- 4) How much energy is roughly stored in one ILC cavity at nominal gradient?