Homework Set 1 solutions (10/29/15), C1 class (X-Ray Free

Electron Laser Theory), 9th ILC school, 2015

1 Energy conservation in 1D FEL theory

In a slightly modified form, the energy conservation relation of slide 19 (including the correction for the typo) is

$$
\int d \theta \frac{\partial}{\partial z}\left(2 \varepsilon_{0} E(\theta, z) E^{*}(\theta, z)\right)+\sum_{j} n_{e} \gamma_{r} m c^{2} \frac{d \eta_{j}}{d z}=0
$$

To begin with, we note that the integrand can be written as

$$
2 \varepsilon_{0}\left(\frac{\partial E}{\partial z} E^{*}+E \frac{\partial E^{*}}{\partial z}\right)
$$

Using the Maxwell equation for the field, we get

$$
\frac{\partial E}{\partial z}=-\chi_{2} n_{e}\left\langle e^{-i \theta_{j}}\right\rangle_{\Delta}-k_{u} \frac{\partial E}{\partial \theta}
$$

which yields

$$
\begin{aligned}
& 2 \varepsilon_{0}\left(\frac{\partial E}{\partial z} E^{*}+E \frac{\partial E^{*}}{\partial z}\right) \\
& =-2 \varepsilon_{0} \chi_{2} n_{e}\left[E^{*}\left\langle e^{-i \theta_{j}}\right\rangle_{\Delta}+E\left\langle e^{+i \theta_{j}}\right\rangle_{\Delta}\right]-2 \varepsilon_{0} k_{u} \frac{\partial\left(E E^{*}\right)}{\partial \theta} \\
& =-\gamma_{r} m c^{2} \chi_{1} n_{e}\left[E^{*}\left\langle e^{-i \theta_{j}}\right\rangle_{\Delta}+E\left\langle e^{+i \theta_{j}}\right\rangle_{\Delta}\right]-2 \varepsilon_{0} k_{u} \frac{\partial\left(E E^{*}\right)}{\partial \theta}
\end{aligned}
$$

where we have used the fact that $2 \varepsilon_{0} \chi_{2}=e K[J J] / 2 \gamma_{r}=\gamma_{r} m c^{2} \chi_{1}$. Using the above relation and the pendulum equation

$$
\frac{d \eta_{j}}{d z}=\chi_{1}\left[E_{j} e^{i \theta_{j}}+E_{j}^{*} e^{-i \theta_{j}}\right]
$$

we get

$$
\begin{aligned}
& \int d \theta \frac{\partial}{\partial z}\left(2 \varepsilon_{0} E(\theta, z) E^{*}(\theta, z)\right)+\sum_{j} n_{e} \gamma_{r} m c^{2} \frac{d \eta_{j}}{d z} \\
& =-2 \varepsilon_{0} k_{u} \int d \theta \frac{\partial\left(E E^{*}\right)}{\partial \theta} \\
& -\gamma_{r} m c^{2} \chi_{1} n_{e} \int d \theta\left[E^{*}\left\langle e^{-i \theta_{j}}\right\rangle_{\Delta}+E\left\langle e^{+i \theta_{j}}\right\rangle_{\Delta}\right] \\
& +n_{e} \gamma_{r} m c^{2} \chi_{1} \sum_{j}\left[E_{j} e^{i \theta_{j}}+E_{j}^{*} e^{-i \theta_{j}}\right]=-\left.2 \varepsilon_{0} k_{u}|E|^{2}\right|_{\theta=-\infty} ^{\theta=+\infty}=0
\end{aligned}
$$

since the field vanishes at $\theta= \pm \infty$ (we have also used the relation $\int d \theta E\left\langle e^{i \theta_{j}}\right\rangle_{\Delta}=$ $\sum_{j} E_{j} e^{i \theta_{j}}$, along with its conjugate).

2 1D SASE parameters

From $D(\mu)=0$, the case of zero energy spread gives $\mu^{3}=1$ (by setting $V(\eta)=\delta(\eta)$ and $\Delta \nu=0$ in the expression of slide 27 , we have $D(\mu)=$ $\mu-\mu^{-2}$). Again using $V(\eta)=\delta(\eta)$, we then find

$$
\begin{equation*}
g_{A}=\frac{1}{\left|D^{\prime}(\mu)\right|^{2}}=\frac{1}{\left|1+2 \mu^{-3}\right|^{2}}=\frac{1}{9} \tag{1}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
g_{S}=\int \frac{d \eta V(\eta)}{|\eta / \rho-\mu|^{2}}=\frac{1}{|\mu|^{2}}=1 . \tag{2}
\end{equation*}
$$

From the cubic equation, $\mu^{3}=1$, we find a positive imaginary part $\mu_{I}=$ $\sqrt{3} / 2$.

The gain length is $L_{G}=\left(4 \mu_{I} \rho k_{u}\right)^{-1}=\lambda_{u} / 4 \pi \sqrt{3} \rho$, as we found before.
If we write $\mu=\mu_{0}+a \Delta \nu+b \Delta \nu^{2}+\ldots$, we can use $\mu_{0}^{3}=1$ to find

$$
\begin{align*}
& \mu^{3}-\frac{\Delta \nu \mu^{2}}{2 \rho}=1 \\
\Rightarrow & \mu_{0}^{3}+3 \mu_{0}^{2} a \Delta \nu+3 \mu_{0} a^{2} \Delta \nu^{2}+3 \mu_{0}^{2} b \Delta \nu^{2}-\frac{\Delta \nu \mu_{0}^{2}+2 \mu_{0} a \Delta \nu^{2}}{2 \rho}=1 \\
\Rightarrow & \mu_{0}^{3}+\Delta \nu\left(3 \mu_{0}^{2} a-\mu_{0}^{2} / 2 \rho\right)+\Delta \nu^{2}\left(3 \mu_{0} a^{2}+3 \mu_{0}^{2} b-2 \mu_{0} a / 2 \rho\right)=1 \tag{3}
\end{align*}
$$

where we've kept terms only to $\Delta \nu^{2}$. Collecting terms in powers of $\Delta \nu$ (which must all vanish), we find $a=1 / 6 \rho$ and $3 \mu_{0} b=2 a / 2 \rho-3 a^{2}$ which gives

$$
\begin{align*}
b & =\frac{1}{36 \rho^{2} \mu_{0}}=\frac{1}{36 \rho^{2}(1 / 2+\sqrt{3} i / 2)} \\
& =-\frac{1}{2} \frac{1}{36 \rho^{2}}-\frac{\sqrt{3}}{2} \frac{1}{36 \rho^{2}} i \tag{4}
\end{align*}
$$

where we've taken the solution for μ_{0} with exponential growth. Plugging back in to μ we find

$$
\begin{equation*}
\mu=-\frac{1}{2}\left(1-\frac{1}{3 \rho} \Delta \nu+\frac{1}{36 \rho^{2}} \Delta \nu^{2}+\ldots\right)+\frac{\sqrt{3}}{2} i\left(1-\frac{1}{36 \rho^{2}} \Delta \nu^{2}+\ldots\right) . \tag{5}
\end{equation*}
$$

Then taking only the imaginary part, μ_{I}, of μ, we write the growth term as $e^{4 \mu_{I} \rho k_{u} z}=e^{\tau} S\left(\omega-\omega_{m}\right)$, with $\tau=2 \sqrt{3} \rho k_{u} z$. That leaves

$$
\begin{align*}
S\left(\omega-\omega_{m}\right) & =e^{-4 \rho k_{u} z \frac{\sqrt{3}}{2} \frac{\Delta \nu^{2}}{3 \rho^{2}}} \\
& =e^{-\frac{1}{2} \frac{k_{u} z \sqrt{3}}{9 \rho}\left(\frac{\omega-\omega_{m}}{\omega_{m}}\right)^{2}} \tag{6}
\end{align*}
$$

So we find

$$
\begin{align*}
\sigma_{\omega} & =\sqrt{\frac{9 \rho}{k_{u} z \sqrt{3}}} \\
& =\sqrt{\frac{9 \rho}{2 \pi \sqrt{3} N_{u}}} \tag{7}
\end{align*}
$$

where we used $z=N_{u} \lambda_{u}$ in the final step.

