### Lecture B2: Superconductive RF

### **Cavity Fundamental**

T. Saeki (KEK) LC school 2015 27 Oct. - 6 Nov. 2015, Whistler, Canada



# 1.3 GHz elliptical 9-cell cavity



### **Pill Box Cavity**

#### L : Inductance





### Pill Box Cavity







# Modes in pill-box cavity

- TM<sub>010</sub>
  - Electric field is purely longitudinal
  - Electric and magnetic fields have no angular dependence
  - Frequency depends only on radius, independent on length
- **TM**<sub>0mn</sub>
  - Monopoles modes that can couple to the beam and exchange energy
- **TM**<sub>1mn</sub>
  - Dipole modes that can deflect the beam
- TE modes
  - No longitudinal E field
  - Cannot couple to the beam

### TM-modes in pill-box cavity

$$\frac{E_r}{E_0} = -\frac{n\pi}{x_{lm}} \frac{R}{L} J_l' \left( x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \cos l\varphi$$

$$\frac{E_{\varphi}}{E_0} = \frac{ln\pi}{x_{lm}^2} \frac{R^2}{rL} J_l \left( x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \sin l\varphi$$

$$\frac{E_z}{E_0} = J_l \left( x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \cos l\varphi$$

$$\omega_{lmn} = c \sqrt{\left(\frac{x_{lm}}{R}\right)^2 + \left(\frac{\pi n}{L}\right)^2}$$

$$\frac{H_r}{E_0} = -i\omega\varepsilon \frac{l}{x_{lm}^2} \frac{R^2}{r} J_l \left( x_{lm} \frac{r}{R} \right) \cos\left( n\pi \frac{z}{L} \right) \sin l\varphi$$
$$\frac{H_{\varphi}}{E_0} = -i\omega\varepsilon \frac{R}{x_{lm}} J_l' \left( x_{lm} \frac{r}{R} \right) \cos\left( n\pi \frac{z}{L} \right) \cos l\varphi$$
$$\frac{H_z}{E_0} = 0$$

 $x_{lm}$  is the mth root of  $J_l(x)$ Bessel function

### **Bessel function**



#### Root of Bessel function

| n | 0       | 1       | 2       | 3       |
|---|---------|---------|---------|---------|
| 1 | 2.4048  | 3.8317  | 5.1356  | 6.3802  |
| 2 | 5.5201  | 7.0156  | 8.4172  | 9.7610  |
| 3 | 8.6537  | 10.1735 | 11.6198 | 13.0152 |
| 4 | 11.7915 | 13.3237 | 14.7960 | 16.2235 |



Figure 2.2: Vector plots of the electric and magnetic fields in the TM<sub>010</sub> mode of the pill-box cavity. Left:  $E_z$  in the  $\rho$ -z plane. Right:  $H_{\phi}$  in the  $\rho$ - $\phi$  plane.

$$E_r = E_{\varphi} = 0 \qquad \qquad E_z = E_0 J_0 \left( x_{01} \frac{r}{R} \right)$$
$$H_r = H_z = 0 \qquad \qquad H_{\varphi} = -i\omega\varepsilon E_0 \frac{R}{x_{01}} J_1 \left( x_{01} \frac{r}{R} \right)$$

$$\omega = x_{01} \frac{c}{R}$$
  $x_{01} = 2.405$ 

$$R = \frac{x_{01}}{2\pi} \lambda = 0.383\lambda$$

#### **Energy content**

$$U = \varepsilon_0 E_0^2 \frac{\pi}{2} J_1^2(x_{01}) L R^2$$

# Power dissipation $x_{01} = 2.40483$ $P = E_0^2 \frac{R_s}{\eta^2} \pi J_1^2(x_{01})(R+L)R$ $J_1(x_{01}) = 0.51915$

#### **Geometrical factor**

$$G = \eta \frac{x_{01}}{2} \frac{L}{(R+L)}$$

#### **Energy Gain**

$$\Delta W = E_0 \frac{\lambda}{\pi} \sin \frac{\pi L}{\lambda}$$

#### Gradient

$$E_{acc} = \frac{\Delta W}{\lambda/2} = E_0 \frac{2}{\pi} \sin \frac{\pi L}{\lambda}$$

#### Shunt impedance

$$R_{sh} = \frac{\eta^2}{R_s} \frac{1}{\pi^3 J_1^2(x_{01})} \frac{\lambda^2}{R(R+L)} \sin^2\left(\frac{\pi L}{\lambda}\right)$$



# Pill-box cavity to real cavity

Beam tubes reduce the electric field on axis

Gradient decreases Peak fields increase

**R/Q decreases** 







# Pill-box cavity to real cavity



# Single-cell cavity





# Single-cell cavity



| Quantity                 | Cornell SC 500 MHz | Pillbox                      |
|--------------------------|--------------------|------------------------------|
| G                        | 270 ohmΩ           | $257~\Omega$                 |
| $R_{ m a}/Q_0$           | 88 ohm/cell        | $196 \ \Omega/\mathrm{cell}$ |
| $E_{ m pk}/E_{ m acc}$   | 2.5                | 1.6                          |
| $H_{\rm pk}/E_{\rm acc}$ | 52 Oe/MV/m         | 30.5  Oe/(MV/m)              |



# Cell shape design

- What is the purpose of the cavity?
- What EM parameters should be optimized to meet the design specs?

The "perfect" shape does not exist, it all depends on your application

# Example: CEBAF upgrade

 $\sim$ 

- "High Gradient" shape: lowest E<sub>p</sub>/E<sub>acc</sub>
- "Low Loss" shape: lowest cryogenic losses G(R/Q)





### **CEBAF** upgrade cell-shape comparison

| Parameters                                             | Unit                                              | OC-shape | HG-Shape | LL-Shape |
|--------------------------------------------------------|---------------------------------------------------|----------|----------|----------|
| Øeq                                                    | [mm]                                              | 187.03   | 180.50   | 174.00   |
| Øiris                                                  | [mm]                                              | 70.00    | 61.40    | 53.00    |
| k <sub>cc</sub>                                        | [%]                                               | 3.29     | 1.72     | 1.49     |
| $\mathrm{E}_{\mathrm{peak}}/\mathrm{E}_{\mathrm{acc}}$ | -                                                 | 2.56     | 1.89     | 2.17     |
| $\mathrm{B}_{\mathrm{peak}}/\mathrm{E}_{\mathrm{acc}}$ | $[mT\cdot(MV/m)^{\text{-2}}]$                     | 4.56     | 4.26     | 3.74     |
| Lorentz factor*) kL                                    | $[\mathrm{Hz} \cdot (\mathrm{MV}/m)^{\text{-2}}]$ | -1.35    | -1.1     | -1.2     |
| R/Q                                                    | [Ω]                                               | 96.5     | 111.9    | 128.8    |
| r/q = (R/Q)/length                                     | $[\Omega/m]$                                      | 965      | 1119     | 1288     |
| G                                                      | [Ω]                                               | 273.8    | 265.5    | 280.3    |
| R/Q*G                                                  | $[\Omega^*\Omega]$                                | 26421    | 29709    | 36102    |

CEBAF Upgrade: cryo-budget limit of 30W/cavity. Higher energy gain can be obtained using LL-shape.

# Trend in TM-mode cavity design

• The **field emission is not a hard limit** in the performance of sc cavities if the surface preparation is done in the right way.

• Unlikely this, magnetic flux on the wall limits performance of a sc cavity ( $Q_0$  decreases or/and quench). Hard limit ~180 mT for Nb.



# New advanced shape for ILC



| r <sub>iris</sub>                   | [mm]                    | 35    | 30    | 33    |
|-------------------------------------|-------------------------|-------|-------|-------|
| k <sub>cc</sub>                     | [%]                     | 1.9   | 1.52  | 1.8   |
| E <sub>peak</sub> /E <sub>acc</sub> | -                       | 1.98  | 2.36  | 2.21  |
| B <sub>peak</sub> /E <sub>acc</sub> | [mT/(MV/m)]             | 4.15  | 3.61  | 3.76  |
| R/Q                                 | [Ω]                     | 113.8 | 133.7 | 126.8 |
| G                                   | [Ω]                     | 271   | 284   | 277   |
| R/Q*G                               | [ <i>Ω</i> * <i>Ω</i> ] | 30840 | 37970 | 35123 |

![](_page_19_Picture_3.jpeg)

# **Cell-shape parametrization**

![](_page_20_Figure_1.jpeg)

### **R-iris**

Why for a smaller aperture (R<sub>iris</sub>)?

- (R/Q) is bigger
- $E_{peak}/E_{acc}$ ,  $B_{peak}/E_{acc}$  is lower

### $E_{acc}$ is higher at the same stored energy in the cell

![](_page_21_Figure_5.jpeg)

E, (z) for small and big iris radius

**R**-iris

#### We know that a smaller aperture makes:

•  $B_{peak}/E_{acc}$ ,  $E_{peak}/E_{acc}$  lower

• (R/Q) higher

![](_page_22_Picture_3.jpeg)

#### but unfortunately a smaller aperture makes:

- HOMs impedances  $(k_{\perp}, k_{\parallel})$  higher cell-to-cell coupling  $(k_{cc})$  weaker

Pre-tuning is difficult for multi-cell cavity

#### Intuitive understanding for controlling E-peak and B-peak

Add "magnetic volume" at the equator to reduce  $\mathsf{B}_{\mathsf{peak}}$ 

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

#### Re-entrant shape : The world-record holder of highest Eacc

![](_page_24_Figure_1.jpeg)

### RF test of LL-shape single-cell cavity

|                                     |             | LL     |
|-------------------------------------|-------------|--------|
| f <sub>π</sub>                      | [MHz]       | 1286.6 |
| E <sub>peak</sub> /E <sub>acc</sub> | -           | 1.86   |
| $B_{peak}/E_{acc}$                  | [mT/(MV/m)] | 3.71   |
| R/Q                                 | [Ω]         | 130.0  |
| G                                   | [Ω]         | 279    |
| Ø <sub>iris</sub>                   | [mm]        | 61     |

![](_page_25_Picture_2.jpeg)

![](_page_25_Figure_3.jpeg)

#### **RF** Test of LL single-cell cavity / Eacc = 53.5 MV/m

 $\checkmark$ 

![](_page_26_Figure_1.jpeg)

Eacc = 53.5 MV/m was achieved. This had been the world record until RE single-cell cavity reached beyond.

### Series RF tests of LL single-cell cavities

![](_page_27_Figure_1.jpeg)

17

# RF test of RE-shape single-cell cavity fabricated by Cornell Univ.

|                                     |             | RE     |
|-------------------------------------|-------------|--------|
| f <sub>m</sub>                      | [MHz]       | 1278.6 |
| E <sub>peak</sub> /E <sub>acc</sub> | -           | 2.19   |
| B <sub>peak</sub> /E <sub>acc</sub> | [mT/(MV/m)] | 3.79   |
| R/Q                                 | [Ω]         | 126.0  |
| G                                   | [Ω]         | 278    |
| Ø <sub>iris</sub>                   | [mm]        | 68     |

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_3.jpeg)

This cavity reached Eacc > 60 MV/m. I believe this cavity might be the world-record holder of highest Eacc. Sorry, I could not find the plot, that I, F. Furuta, and K. Saito measured at KEK...

![](_page_28_Picture_5.jpeg)

# **Multi-cell cavities**

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Picture_4.jpeg)

# **Multi-cell cavities**

Modes of a 2 Cell Cavity

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

: Sketch of the electric field lines of the  $\pi\text{-mode}$  of a 5-cell :

![](_page_30_Picture_5.jpeg)

# **Multi-cell cavities**

![](_page_31_Picture_1.jpeg)

Single-cell is attractive from the RF-point of view:

- Easier to manage HOM damping
- No field flatness problem.
- Input coupler transfers less power
- Easy for cleaning and preparation
- But it is expensive to base even a small linear accelerator on the single cell. We do it only for very high beam current machines.

![](_page_31_Picture_8.jpeg)

A multi-cell structure is less expensive and offers higher real-estate gradient but:

Field flatness (stored energy) in cells becomes sensitive to frequency errors of individual cells

Other problems arise: HOM trapping...

![](_page_31_Picture_12.jpeg)

# Pros and cons of Multi-cell cavities

![](_page_32_Picture_1.jpeg)

- Cost of accelerators are lower (less auxiliaries: LHe vessels, tuners, fundamental power couplers, control electronics)
- Higher real-estate gradient (better fill factor)
- Field flatness vs. N
- HOM trapping vs. N
- Power capability of fundamental power couplers vs. N
- Chemical treatment and final preparation become more complicated
- The worst performing cell limits whole multi-cell structure

# **Coupling between cells**

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

Symmetry plane for the H field

The normalized difference between these frequencies is a measure of the energy flow via the coupling region

Symmetry plane for the E field which is an additional solution

 $k_{cc} = \frac{\omega_{\pi} - \omega_0}{\omega_{\pi} + \omega_0}$ 2

ω\_π

### **Coupling between cells**

$$\sum_{\mathbf{c}_{b}} \underbrace{ \begin{bmatrix} \mathbf{c}_{b} & \mathbf{c}_{b} & \mathbf{c}_{b} \\ \mathbf{c}_{b} & \mathbf{c}_{k} & \mathbf{c}_{k} \\ \mathbf{c}_{k} & \mathbf{c}_{k} & \mathbf{c}_{k} & \mathbf{c}_{k} \\ \mathbf{c}_{k} & \mathbf{c}_{k} & \mathbf{c}_{k} \\ \mathbf{$$

Mode frequencies:

$$\frac{\omega_m^2}{\omega_0^2} = 1 + 2k \left( 1 - \cos \frac{\pi m}{n} \right)$$
$$\frac{\omega_n - \omega_{n-1}}{\omega_0} \simeq k \left( 1 - \cos \frac{\pi}{n} \right) \simeq \frac{k}{2} \left( \frac{\pi}{n} \right)^2$$

Voltages in cells: V

$$T_j^m = \sin\left(\pi m \frac{2j-1}{2n}\right)$$

## Pass-band mode analysis

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

![](_page_35_Figure_3.jpeg)

![](_page_35_Figure_4.jpeg)

![](_page_35_Figure_5.jpeg)

9 Cell, Mode 5

![](_page_35_Figure_7.jpeg)

![](_page_35_Figure_8.jpeg)

![](_page_35_Figure_9.jpeg)

9 Cell, Mode 7

![](_page_35_Figure_11.jpeg)

9 Cell, Mode 8

![](_page_35_Figure_13.jpeg)

9 Cell, Mode 9

![](_page_35_Figure_15.jpeg)

### Pass-band mode : Frequency

9-cell cavity

![](_page_36_Figure_2.jpeg)

### Field flatness

Geometrical differences between cells causes a mixing of the eigenmodes

Sensitivity to mechanical deformation depends on mode spacing

$$\frac{\omega_n - \omega_{n-1}}{\omega_0} \simeq k \left( 1 - \cos \frac{\pi}{n} \right) \simeq \frac{k}{2} \left( \frac{\pi}{n} \right)^2$$

![](_page_37_Figure_4.jpeg)

If cell-to-cell coupling is weak, field-flatness is easily broken by mechanical deformation of cells.

### Field flatness after pre-tuning of LL 9-cell cavity

![](_page_38_Figure_1.jpeg)

| Cavity          | Field flatness (min/max)<br>as delivered / after pre-tuning | Freq. target 1298.141 (MHz) @R.T.<br>as delivered / after pre-tuning |
|-----------------|-------------------------------------------------------------|----------------------------------------------------------------------|
| 1 <sup>st</sup> | 0.1% / 98%                                                  | 1298.774 / 1298.547                                                  |

#### Cell-to-cell coupling is as small as 1.6%, but no problem in pre-tuning.

![](_page_39_Figure_1.jpeg)

No Q-disease was found.

 $\checkmark$ 

# Mechanical design

The mechanical design of a cavity follows its RF design:

- Lorentz Force Detuning
- **Mechanical Resonances** ٠

![](_page_40_Figure_4.jpeg)

E and H at  $E_{acc}$  = 25 MV/m in TESLA inner-cup

# Mechanical design

![](_page_41_Figure_1.jpeg)

Essential for the operation of a pulsed accelerator  $\Delta f = k_L (E_{acc})^2$   $k_L = -1 \ Hz/(MV/m)^2$ 

![](_page_41_Picture_4.jpeg)

# **Mechanical design**

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

**TESLA structure** 

The mechanical resonances modulate frequency of the accelerating mode. Sources of their excitation: vacuum pumps, ground vibrations...

These mechanical resonant modes are also closely related to the microphonics.

## **Optimum stiffener-ring positioning**

![](_page_43_Figure_1.jpeg)

### RF Test of LL 9-cell cavity in Cryomodule

![](_page_44_Picture_1.jpeg)

![](_page_44_Figure_2.jpeg)

### I Q measurement by LLRF (LL 9cell cavity in cryomodule)

![](_page_45_Figure_1.jpeg)

Q of SC RF cavity ~ 10\*\*10. This means the resonant frequency of cavity should be controlled within a few Hz taking into account the vibration of cavity.

![](_page_45_Picture_3.jpeg)

#### High-power RF Test of LL 9-cell cavity in cryomodule

![](_page_46_Figure_1.jpeg)

#### High-power RF Test of LL 9-cell cavity in cryomodule Phase measurements (LLRF)

![](_page_47_Figure_1.jpeg)

#### Mixer Output Signal @ 25dBm (Pg)

![](_page_48_Figure_1.jpeg)

#### **Evaluation of Microphonics (LL 9-cell cavity in CM)**

 $\checkmark$ 

![](_page_49_Figure_1.jpeg)

Microphonics is  $\pm 3 \text{mV}$ , which corresponds to  $\pm 3 \text{Hz}$  in frequency and  $\pm 0.5^{\circ}$  in phase variation.