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We have looked rf structures in order to understand how to get an interaction between an 
rf field and a relativistic beam – the issues were mainly getting synchronism and getting 
the electric field to point in the right direction.  
 
Now we are going to look at the terminology and formalism to describe how much 
acceleration the beam actually gets. 
 
We are going to study how much energy you transfer to the beam from a certain stored 
energy in a standing wave cavity or power flow in a travelling wave cavity.  
 
We approach this in steps. 
• First look at a dc gap,  
• then an rf gap 
 
At this moment we will really focus on understanding the energy/power balance. 
 
Then we will look at how travelling wave structures are dealt with.  
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Acceleration is typically measured in units of MV/m, ILC around 30 MV/m and CLIC 100 
MV/m. 
 
We are looking for the answers to precise questions like: 
• How much energy gain will I get from a particular structure if I put in 45 MW?  
• What fraction of my input power will go into accelerating a 1 amp beam? What happens 
if I increase the current to 2 amps?  
 
 

We will develop quantities which variously relate  
• voltage seen by the beam 
• gradient  
• energy of the rf fields 
• power of the rf fields 
• power of the beam 
  
We will of course tend to focus on the electric field since we are talking about accelerating 
electric charges!  

The basics 
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Let’s look together for a moment at a simple capacitor plate (big enough one so we don’t 
have to worry about edge effects) to make sure we are familiar with all the relevant 
quantities in a simple case. 

ground -  P [V] 

cathode anode 

d [m] gap size, A [m2]area 
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Now an rf ‘cavity’ (without being specific about the details of what it is):  
 
The ‘voltage’ of an rf gap is of course more complicated because the fields are 
oscillating while the beam takes the time to cross the gap. Remember the definition of 
the transit time factor from section 1:  

 dzzEVacc )(

We will use the numerator again, which is the effective gap 
voltage: 
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complex number 

The magnitude is the 
highest acceleration you 
get from the cavity. 



6 

For the stored energy in a cavity we need to include both the electric and magnetic field: 
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Putting the two terms we can define: 
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 Which has units of Ω. 

R/Q – relates the amount of acceleration (squared) you get for a given amount of stored 
energy.  If the electric fields are concentrated along the central axis of a cavity this term is 
large. You can use computer programs to get actual values. 
 
The numerator and denominator both scale with field squared, so it is independent of field 
level. It turns out that this term is independent of frequency as well for scaled geometries.  
 
You can do lots of useful calculations knowing this term. But let’s dig deeper. 
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Going a step further 

Our goal now is to derive and understand the loss factor, k. 
 
Accelerating a beam extracts energy from a cavity (and by the way that’s what we need 
to do to get high rf to beam efficiency). 
 
The beam gains energy when you accelerate so the rf fields must loose energy. 
 
We’ll attack this by considering the question “How much energy does a traversing beam 
leave behind in a particular mode of an empty cavity?” and then superimpose the 
solution on a filled cavity, which is how we normally think of acceleration. 
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In this section we will often consider the driven rf fields (driven by a klystron or 
whatever), consider the fields the beam leaves behind and add the two together to 
get our final answer – superposition of beam and rf fields. 
 
There is another subtlety we will use which is that you can break the problem up 
mode by mode, add them up and get the right answer. Another way of saying this is 
that all the eigenmodes of the cavity are orthogonal basis functions for all the possible 
fields in the cavity. You can expand reality as a Fourier series over all the cavity modes. 
 
We will also consider driving bunches, these are the real bunches of the problem with 
finite amount of charge, and witness charges. Witness charges are basically just 
integrals over fields but it is useful to think of charges which follow the main one but 
have almost no charge so don’t affect the fields themselves. 

Concepts we will use 
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A charge passing through a cavity leaves behind it the cavity with voltage in it, and hence 
filled with energy. The beam loses the same amount of energy. The loses energy through 
interacting with an electric field, which in fact comes from itself. 
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Something to think about: 
 
The charge interacting with the fields it makes itself is in direct analogy to the radiated 
electric field produced by a current that you see when discussing the retarded potential 
in free space. For a current in the y direction, 
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You normally think of currents producing magnetic fields but of course to transfer 
energy to an electromagnetic field there has to be movement of an electrical charge 
in the direction of an electric field. 
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The fundamental theorem of beam loading 

The fundamental theorem of beam loading says that the voltage seen by beam which 
has traversed a cavity is half the voltage it leaves behind, that is the one that a following 
witness bunch would see. 
 
A non-rigorous way of seeing this, is that the cavity is empty when the beam enters and 
only full when it leaves – so on average it sees the cavity only half full (or half empty, 
like the proverbial glass!). A more rigorous understanding requires the formalism of 
longitudinal wakefields we will cover in section 4. 
 
Is this easier to understand than the free-space case? 
 
But in the mean time let’s introduce a loss factor k which satisfies this factor of two. The 
voltage left is proportional to the charge so:  
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The loss factor k 

Let’s now consider conservation of energy, what 
the bunch loses the cavity gains: 
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So the higher the R/Q the more field left behind in a mode by a given charge. 

Equations we will 
use 
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Now let’s look at a cavity that already has 
fields in it 

Everybody’s first understanding is that the beam is just sees the accelerating fields that are 
there because we pump lots of microwaves into a cavity. But this is only true if the bunch 
charge is low, and we have negligible rf-to-beam efficiency. 
 
In a linear collider we have rf-to-beam efficiency in the range of 30% to deal with the 10’s of 
MW average power beams we need to accelerate.  
 
So let’s now look at a cavity with field in it that gives V0 and currents which are leaving 
fields which are non-negligible. 
 
The essential insight is that a passing bunch reduces the fields inside a filled cavity in 
exactly the same way as an empty cavity - superposition: 
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Checking consistency through energy balance 
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Tonight you will re-do this consistency check – 
but with arbitrary input phase! 
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ΔV 
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In a real cavity, we of course have the losses we saw in section 1. To deal with this we 
introduce the shunt impedance. We start with R/Q, which is independent of any losses, 

W

V

Q

R acc



2

 And take our definition of Q,  

lossP

W
Q


 To define the shunt impedance, 

loss

acc

P

V
R

2



The units of R are again Ω, and a typical normal conducting cavity has an R in the range of 
M Ω. Note that both numerator and denominator scale with field squared. R is a measure 
of the acceleration to the losses and is often a quantity you optimize when designing an rf 
cavity. 
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Now travelling wave structures 

We’ve just gone through an analysis where we have considered stored energy. This is 
straight forward to apply to standing wave structures 
 
You will be doing some numerical examples in homework problems. 
 
But the basic concepts remain the same for travelling wave structures. We have to 
extends things a bit and make sure we are accounting for all the energy going in and out 
of our problem.  
 
Firstly we are going to consider a single cell of an infinitely long periodic structure which 
has been tuned to vphase=c, i.e. a synchronous wave. This is quite reasonable since tuned 
cells are usually what we deal with.  
 
The fact that the phase and beam velocities are the same gives us the periodicity to 
easily do all of our calculations on a single cell. 
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Single cell electric field pattern 2/3 phase advance 



19 

Single cell magnetic field pattern 2/3 phase advance 
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Standing to travelling wave 

We will take over our definition of R/Q and shunt impedance and define it per cell, but 
then divide by the length of the cell, l, to get R’/Q and R’ which are per unit length. 
 
The other thing we will do is to put these quantities in terms of power flow rather than 
stored energy since this is the natural quantity for travelling wave structures. 
 
The relationship between power flow and stored energy is, 

WvP g

And we can get the relationship between accelerating gradient G, voltage per unit 
length (which is valid over one cell length), and power flow, 
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Power flow in disk loaded waveguide 2/3 phase advance 

Real part of complex 
Poynting vector 
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Let’s set up a differential equation based on power conservation  

P
Qvdz
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= −𝑃𝑤𝑎𝑙𝑙

′  

Power to the wall 
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Tonight, during the homework session, you will re-derive and/or re-express 
this differential equation in terms of gradient. Here again are the terms you 
will need: 

𝑑𝑃

𝑑𝑧
= −𝑃𝑤𝑎𝑙𝑙

′  

𝑃 = 𝑣𝑔
𝐺2

𝜔𝑅′ 𝑄 
 Power flow relations 
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𝐺2

𝑅′
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 and 
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The general differential equation in terms of gradient 

A. Lunin, V. Yakovlev, A. Grudiev PRSTAB, 14, 052001 (2011) 
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We will now discuss how charges, which travel through rf structures (and beam pipes with 
features) , leave behind fields and how these fields act on following charges. 
 
In the previous section we restricted ourselves only to the interaction between a current 
and a single (the main one) mode of an rf structure. We focused on acceleration. 
 
Now we will consider the interaction with many modes, in particular on transverse ones. 
We address for the purposes of studying beam stability. A beam picks up energy spread 
and transverse kicks from wakefields. 

Wakefields 
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In this section we are going to consider only highly relativistic driving and 
following bunches:  
• using the (really good) approximation that v=c 
• that the beam trajectories through the structures we study are not affected 
by the fields, i.e. they follow straight unbendable lines 
• we will calculate the momentum “kicks” the particles are subject to and 
pass them on to the beam dynamics gang. They will deal with the trajectories 
on bigger scales through particle tracking.  
 

This is a very special case of moving charges, radiated fields along with 
conductors – luckily for us the charge movement is fixed before hand and we 
only need to understand the fields. 
 

This is for example not the case in the injector where the beam is not 
relativistic yet. There you need to solve field and particle trajectories self 
consistently using PIC (Particle In Cell) codes. 

Basic assumptions 
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Two kinds of wakefields  

We consider a train of bunches. Here a 
bunch acts on following bunches. We call 
this effect the long-range wakefield. 
We often analyze this case by considering 
the series of modes the driving beam 
excites in the cavity or DLWG. 

We consider a single bunch, and all real 
bunches have finite length. Here the head 
of the bunch acts on the tail of the bunch. 
We call this effect the short-range 
wakefield. 
This one we analyze by considering the 
diffraction of the fields of the bunch from 
the discontinuities in the walls of our 
cavity or DLWG. 
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Another distinction among wakefields  

Transverse wakefields – a radially offset 
bunch (head) excites azimuthally varying 
modes which gives a transverse momentum 
to following bunches (tail).   

The induced kick is represented by the red arrow. 

Longitudinal wakefields – a bunch (head) 
excites m=0 modes which gives an 
acceleration/deceleration momentum to 
following bunches (tail).  We’ve already 
started working on this type of wakefield in 
section 2. 
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Actually solving something 

These days there are a number of programs - GdfidL, Microwave Studio, ACE3P, HFSS - to 
get spectacularly accurate solutions for the wake potentials.  
 
They operate mainly in time-domain, calculating fields step by step as the particle flies 
through the structure and doing for you the necessary integrals.  
 
You can also use frequency domain codes to get detailed understanding of what’s 
happening to individual modes and do design work. There is also a rich history of semi-
analytic methods like circuit models and mode matching techniques. 
 
Still it is important to be familiar with the underlying theory in order to understand the 
results and what the origin of different features are.  
 
I won’t be fully rigorous, there isn’t nearly enough time, but I’ll try to pick out the 
highlights of derivations and the characteristics for solutions for special cases.  
 
In the next section we will study how to design a cavity to reduce wakefield effects. 
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We will now look at the ‘frequency spectrum’ of a finite length bunch. 
 
Bunches in linear colliders are short – with a 50 m for CLIC 
 
Radiation from bunches starts to be suppressed at frequencies where, roughly, the 
half wavelength is less than the bunch length.  
 
This point is important since it puts an upper limit on the frequencies that we 
need to consider. 
 
Let’s look at this question in a bit more detail. 
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The “pancake” field pattern of a relativistic point charge 

1

21

1







c

v


 
 2

3
222

04

,

rz

rq
rzEr








ctz 

E

Example: 1 TeV charge at 3 mm radius has field 
region only 6 nm to be compared to CLIC bunch 
length of roughly 100 μm.  

nmmm
MeV

TeV
d 63

511.0

1




32 

No fields before or after charge - we do not need to consider direct charge-to-
charge forces. 
 
We need our conducting boundaries to communicate to following charges.  
 
And of course it’s impossible to communicate forward, you’d have to go faster 
than the speed of light. 
 
Because the ‘opening angle’ of the field of a relativistic beam is so narrow, our 
field pattern in free space exactly matches our bunch charge pattern for real 
linear collider type bunches.  
 
Before we look at the excitations of modes, which have specific frequencies, let’s 
get a feeling for the frequencies a typical linear collider bunch contains. 

Points to emphasize 
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The fields left behind a finite length bunch 
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We are now going to introduce the idea of a wake potential. 
 
This is the potential, measured in volts, a driving bunch leaves behind it, which is 
experienced by a witness charge. 
 
In the standard formalism the bunches both travel at the speed of light, along straight 
lines parallel to the structure axis.  
 
This is the information needed for beam dynamics simulations which calculate 
instabilities caused by charges acting on following charges. 
 
The wake potential can be given for the whole of a finite length structure or per unit 
length for a infinitely long periodic structure. 
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Our coordinate system 
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The longitudinal wake potential 
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This the total voltage that is lost (or gained) by a test charge following a driving 
charge q at distance s.  
 
It induces an energy spread in the beam which causes emittance growth through 
effects like chromaticity.   
 
The wake potential is given by the integral of the fields that are left behind by a very 
short driving bunch, 
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As we have seen, high frequency part of the wake will depend on how long the 
bunch is. It is cut-off at half-wavelengths which correspond to the bunch length. 
 
This comes out rigorously because the delta wake-potential on the previous slide 
can then be used as a Green’s function to get the voltage loss/gain from a bunch of 
arbitrary shape by convoluting with the shape of the current, 

     



0

sdsWssIsW zz

Now we will look at how you would approach calculating the longitudinal wake for a 
resonant cavity which has lots of modes, and then look at a numerical example. 
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Longitudinal wake by expanding the normal modes in a cavity  

Reminder from section 2, the loss factor from a 
mode  is,   
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
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V
k

4

2



The total acceleration left behind in the mode is 
(the bunch sees half its own field), 

k2

To get the total wake potential we sum over all 
the modes  (that is really about all there is to it), 
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The terms of the longitudinal wake are cosine-like, which is 
reasonable, because the driving bunch itself loses energy. 
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Longitudinal wake potential 
from in a pillbox cavity 

=2 mm bunch 
 

Philosophy: Here we 
see better where the 
fundamental theorem 
of beam loading is 
coming from 



Longitudinal wake 
Cavity: 
r=10 mm radius 
d=2 mm thick 
Beam pipe: 
1 mm radius 
Beam: 
σ = 0.5 mm 



𝜎 = 0.5 𝑚𝑚 





𝑓𝑛,𝑚,𝑝 =
𝑐

2𝜋

𝑥𝑛,𝑚
2

𝑟2
+
𝑝2𝜋2

𝑑2
 

Where for TM modes 𝑥𝑛,𝑚 is the nth root of Jm(r) 
r is the cell radius  
d is the cell length 

TM0,1,0 TM0,2,0 TM0,3,0 TM0,4,0 TM0,5,0 TM0,6,0 

TM0,1,1 

TM0,2,1 

TM0,3,1 

TM0,4,1 

Pillbox cavity 
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Now the transverse wake potential 

It tells us how a transversely offset bunches gives a transverse kick to following charges. 
 
BUT this one is significantly trickier. We have seen how fields are excited as a function of 
offset and now we need to understand how they kick following bunches. 
 
We already have all the formalism to deal with the excitation of the bunch, the loss 
factor k: 
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We just need to do the integral along a path with the correct transverse offset. k goes 
to being k(r,) . 
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The physics of how rf fields kick a particle is of course all completely contained in 
the Lorenz force, 
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But there is a simpler way of looking at the kick from rf cavities. 
You can put in some properties which come from E and B being related through 
Maxwell’s equations, 
and that we are considering the special case that v=c, 
and derive something called the Panofsky-Wenzel theorem. 
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The Panofsky-Wenzel Theorem 

We don’t have time to do the derivation, I will just state the result, and then we will 
look at the consequences of it in a couple of special cases. 
 
The Panofsky-Wenzel theorem says that you can get the total transverse kick of an rf 
cavity by integrating the radial variation of the longitudinal acceleration, 

  
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
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The Panofsky-Wenzel theorem relates the transverse wake to changes in the 
longitudinal one. 
 
It also tends to be computationally simpler than calculating the forces directly and can 
be very, very useful in quickly settling arguments with your colleagues. You can easily 
see what the fields will do. 
 
Let’s look at some special cases to get a feeling for this equation. 
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A surprise - the TE1,1,1 mode cannot kick the beam! 

Because it has no longitudinal 
electric field so Panofsky-Wenzel 
says it won’t! 
 
But certainly the transverse 
electric field must kick the beam? 
  
You can look at the problem more 
closely and in this specific case 
convince yourself the magnetic 
field magnetic field  cancels  the 
kick from the electric field.  
 
But it’s easier just to use the 
Panofsky-Wenzel theorem, no Ez so 
no variation in Ez so no kick! 

E fields on magnetic symmetry plane H fields on electric symmetry plane 

E fields on magnetic symmetry plane 
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But the TM1,1,0 mode does deflect 

E fields on magnetic symmetry plane 

H fields on conducting end wall 

zE

There’s both Ez and a transverse 
gradient of it – hence the mode 
kicks the beam. 
 
The excitation by the beam is 
proportional to E so increases 
‘linearly’ with transverse offset. 
 
This is the “cavity BPM” and “rf 
kicker” mode. 
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Now there’s an amazing thing about beam apertures. 
 
It’s one of the rare occasions where a necessary, practical, feature (you’ve got to get the 
beam through the cavity) gives you a simplified behavior. 



51 

What do I mean by this? 
 
Consider the acceleration by the TM0,1,0 mode in a pillbox cavity. 
 
The field pattern is J0, a Bessel function. Consequently you have a radial dependence of 
the integral and you expect to have rf (de)focusing. 
 

BUT 
 
over a circular beam aperture there is no variation of the integral of Ez so no focusing! 
 
Why? I would need to study this proof more to be in a position to teach it… But the 
essential element is that with a beam pipe, the bunch does not cross any conducting 
charges. This means that there are conservation of flux integrals over volumes inside the 
beam aperture. 
 
For the TM0,1,0 mode the flux lines in the center of the cavity only end on the cavity beam 
pipe, so you get the same projected and integrated Ez at all radii inside the beam pipe. 
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The consequence of this is that, for a circular geometry, with a  circular beam pipe, you 
can expand the Ez integral as, 

im
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And the consequence of being able to expand the fields in such a way is that for 
modes with 
 
m=0: The Ez integral is constant so no kick. 
m=1: The Ez integral varies strictly linearly across the beam aperture 
m=2: etc. 
 
On the other hand if the beam aperture, or the cavity, is not circular then you cannot 
expand the fields like shown above and you get variation in r and . You can make a 
rf quadrupole from oval cells or apertures. 
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Transverse wake potential in pillbox 
cavity.  
3 mm  beam, 1 mm off-set  



Transverse wake 
Cavity: 
10 mm radius 
2 mm thick 
Beam pipe: 
1 mm radius 
Beam: 
σ = 0.5 mm 
Offset 0.5 mm 



𝜎 = 0.5 𝑚𝑚 





𝑓𝑛,𝑚,𝑝 =
𝑐

2𝜋

𝑥𝑛,𝑚
2

𝑟2
+
𝑝2𝜋2

𝑑2
 

Where for TM modes 𝑥𝑛,𝑚 is the nth root of Jm(r) 
r is the cell radius  
d is the cell length 

TM1,1,0 TM1,2,0 TM1,3,0 TM1,4,0 

Pillbox cavity 

etc. – pillbox does not 
include beam pipe. 



Wakefield from a bunch offset transversely. 
By Kyrre Sjobaek 
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The most important special case 

• Circularly symmetric structure. 
• Small offsets so the transverse wake potential is dominated by dipole, m=1, modes. 
We can write the transverse wake potential as 

 
 

 















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n

n

n

n

c

s

ca

ak

a

r
srW 1

1

1 sin
2

,




a is beam pipe diameter 
r is particle path 

One radial variation due to longitudinal wake. 








pCmm

V



     



0

sdsWssIsW zz

And of course wake for a finite length bunch is the convolution with the delta 
function wake: 


