Instrumentation at ATF / TTF

Accelerator Test Facility (KEK) Tesla Test Facility – FLASH (DESY) ESA / LCLS (SLAC)

Marc Ross, SLAC

Overview:

1. Develop instrumentation and related controls for ILC

(focus on precision position & profile measurements – long. & transverse; focus on LLRF)

- 2. Seeking out and binding worldwide expertise develop and demonstrate collaboration
- 3. Promote the use of ATF, TTF and ESA for this purpose

ATF (DR, low emittance extracted beam) & TTF (SCRF, short bunch) & ESA (short bunch high E) are unique ILC test facilities

4. Bring - to students - the opportunity to work on hardware in a developmental environment Manageable projects beyond the reach of operational pressures

Test Facility Studies 2005-2006

- Projects at ATF (KEK/SLAC +)
 - Cavity Beam position monitors
 - preparation for 'ATF2' the beam delivery demonstration
 - energy spectrometer
 - 'Laserwire' laser based beam profile monitor
 - Ring BPM upgrade ... aimed at low emittance tuning
- Projects at TTF (DESY/SLAC +)
 - SCRF Cavity Higher Order Mode BPM
 - cavity centers
 - high performance beam position monitors
 - beam to RF phase using monopole modes \rightarrow precision RF control
 - Controls projects
- SLAC ESA
 - Bunch length monitors (also for LCLS FEL)
- New collaborators:
 - Fermilab computing, accelerator and tech division.
 - Argonne

ATF Instrumentation Projects (1):

RF Cavity Beam Position Monitors

- 15 nm rms resolution over 20 minute time scale demonstrated (2004-6)
- ILC will have ~2500 cavity BPM's
 - Linac (large bore, low loss factor, high resolution)
 - BD (large bore, high resolution)
 - Energy spectrometer
- ATF2 and FEL undulators will have ~ few ten's
 - BPM is the most critical beam instrument (SLC, TeV, PEPII...)
- Typical requirements ~ 100 nm resolution
 - one micron accuracy
- Projects in process: Beam tests of 6 BPMs & development of production electronics for ATF2

ATF2 Cavity BPM Production electronics

- 6 GHz receiver board layout
- Realistic system design including packaging and mounting hardware
- Tested successfully at ATF April 2006

ATF Instrumentation Projects (2):

2. Laser-based beam profile monitors

- Mechanical 'wire' scanners will not work in ILC
- Build on experience at ATF (ring), SLC and FFTB
- Royal Holloway/Oxford lead; SLAC technical partner
- 1 ~ 2 micron scanner
 - 1% resolution; fast scanning
- 3. Stabilization systems beam feedback and other
 - Optical 'struts' (extension of ATLAS system) developed at Oxford

ATF laser – wire scan (May 25)

First scans Optics and laser aberrations (factor 10 scale error)

ATF Instrumentation Projects (3):

- Upgrade ring BPM's
 - goal 1/1e4 long term stability; 0.1um resolution
 - more than 100x improvement
 - using heterodyne receiver front end and digital downconvertor
 - similar to recent FNAL BPM upgrades
 - calibration and beam based 'offset finding' key

TTF Instrumentation - HOM

- Use of SCRF cavity dipole higher order mode (HOM) signals as beam position monitors
 - (Each cryo-cavity has two HOM couplers)
 - Cryomodule assembly alignment check
 - Beam steering and tuning at TTF
- HOM readout 80 channel heterodyne receiver/digitizer system installed and commissioned 11/05 and 3/06.
 - M/S largely funded by DESY/Saclay.
 - 3 micron resolution demonstrated
 - 10 um offset precision

Installation at TTF2

Higher Order Dipole Modes

- 1600 to 1900 MHz • dipole bands
- nominal 2 polarization • directions (*u*, *v*)

- frequency split, inphase / quadrature phase \rightarrow four components
- linear combination of x x' y y'

5

Cavity

Higher Order Monopole Modes

- 2300 2500 MHz
- Both couplers for 1 cavity shown
- 0.1 degree (L-band) precision \rightarrow 0.2 ps

TM011 Monopole Spectrum 10¹¹ Note that different lines have different couplings to the 2 10¹⁰ couplers Monopole lines due to beam, and 10⁹ phase is related to beam time of arrival Fundamental 1.3GHz line also 10⁸ couples out – provides precise RF to beam phase for control 2.38 2.39 2.4 2.45 2.41 2.44 2.42 2.43 2.46 2 47 Frequency Hz x 10⁹

Beam Phase vs. RF Measurement During 5 Degree Phase Shift

Measure 5 degree phase shift commanded by control system

2 cavities, same structure give 0.34 degree L-band RMS phase difference

Marc Ross (ILC) – Test Facilities

ESA Bunch Length Monitor

- simple ceramic gap and diode detector
- diode and waveguide form crude bandpass filter
- 200 to 400 um bunch length sensitivity (ILC)

Test Facility Plans – 07

- ATF2 preparation
 - component testing and pre-commissioning
 - (movers, beam monitors, tuneup procedures)
 - preparing the ring for ATF2 use \rightarrow BPM upgrade
- TTF, FNAL and partners
 - LLRF studies using HOM
 - Cavity and cryomodule assembly studies
- ESA / LCLS
 - LCLS bunch length monitor commissioning 11/06

Extra

PEP II

- Program: Provide help as requested by SLAC Director (~late 03)
- (not on the agenda, but an important goal for 2004 → extended into this year)
- Two major systems installed:
- LER X-ray Synchrotron Radiation monitor
 - Goal: measure beam size accurately in LER up to full intensity without 'tilt' distortion present in existing monitors
 - Smallest measurable beam size ~ 10 um, well below smallest expected LER sigma_y
 - Bunch by bunch beam size for EC measurements
- X-ray technology extremely important for ILC DR monitors

What is System Resolution, Drift

Compare 2 couplers on same cavity, RMS difference 0.12 degrees L-band.

Electronics noise ~0.08 degrees cavity to cavity difference (0.3 degrees may be due to microphonics)

Compare 2 cavities for long (7 hour) run. RMS difference 0.69 degrees Lband.

Combination of electronics drift and cavity to cavity phase shifts.

