[·••

(Very) low E_{cm} running Prospects?

Nick Walker 129th ILC@DESY project meeting 18.12.2015

• If nothing else changes $L \propto \gamma$

- If nothing else changes $L \propto \gamma$
- First constraint: IR collimation depth
 - ▶ keep IP divergence constant
 - if only horizontally constrained:
 - ▶ TDR assume shorter FD for $E_{CM} \le 250 \text{ GeV}$

$$L \propto \gamma^2 L \propto \gamma^{\frac{3}{2}}$$

- If nothing else changes $L \propto \gamma$
- First constraint: IR collimation depth
 - keep IP divergence constant
 - if only horizontally constrained:
 - ▶ TDR assume shorter FD for $E_{CM} \le 250 \text{ GeV}$
- Second constraint: FFS geometric abberations

• Third-order:
$$\frac{\Delta \varepsilon}{\varepsilon} \propto \varepsilon^2$$

$$L \propto \gamma^2$$
$$L \propto \gamma^{\frac{3}{2}}$$

- If nothing else changes $L \propto \gamma$
- First constraint: IR collimation depth
 - keep IP divergence constant
 - if only horizontally constrained:
 - ▶ TDR assume shorter FD for $E_{CM} \le 250 \text{ GeV}$
- Second constraint: FFS geometric abberations

• Third-order:
$$\frac{\Delta \varepsilon}{\varepsilon} \propto \varepsilon^2$$

• Third constraint: emittance dilution in linac

- ▶ lower energy beam → larger energy spread → chromatic abb.
 - → sensitivity to wakefield

$$L \propto \gamma^2$$
$$L \propto \gamma^{\frac{3}{2}}$$

TDR baseline luminosity

(Polarised) Positron production

__ilc

(Polarised) Positron production

- TDR low-energy solution for ≤ 250 GeV so-called 10-Hz production scheme
 - Double-pulse e- linac with
 - pulse 1: 150 GeV for e+ production
 - pulse 2: 125 GeV for collisions
 - No real lattice/layout design

__ilc

(Polarised) Positron production

- TDR low-energy solution for ≤ 250 GeV so-called 10-Hz production scheme
 - Double-pulse e- linac with
 - pulse 1: 150 GeV for e+ production
 - pulse 2: 125 GeV for collisions
 - No real lattice/layout design

• For 250 GeV longer undulator more practical solution.

(Polarised) Positron production

- TDR low-energy solution for ≤ 250 GeV so-called 10-Hz production scheme
 - Double-pulse e- linac with
 - pulse 1: 150 GeV for e+ production
 - pulse 2: 125 GeV for collisions
 - No real lattice/layout design
- For 250 GeV longer undulator more practical solution.
- Linac dynamics simulated for 250 GeV with $\Delta E_{lumi-prod} = 100 \text{ GeV}$

(Polarised) Positron production

- TDR low-energy solution for ≤ 250 GeV so-called 10-Hz production scheme
 - Double-pulse e- linac with
 - pulse 1: 150 GeV for e+ production
 - pulse 2: 125 GeV for collisions
 - No real lattice/layout design
- For 250 GeV longer undulator more practical solution.
- Linac dynamics simulated for 250 GeV with $\Delta E_{lumi-prod} = 100 \text{ GeV}$
- For 45 GeV beam $\Delta E_{lumi-prod} = -105$ GeV ??
 - probably doesn't work

Solution for "Giga Z" ?

Split linac

. . .

Major reconfiguration of accelerator

Requires a mini design study

- 3rd beamline in linac tunnel
- additional doglegs, bypasses and possible dumps

300-Hz e-driven just source works as is. But no polarised e+

- TDR \mathcal{L} upgrade 1310 $\xrightarrow{33}{33}$ 2625 bunches \checkmark
 - $\rightarrow \sim 2 \times 10 \rightarrow \sim 4 \times 10$

- TDR \mathcal{L} upgrade 1310 $\xrightarrow{33}{33}$ 2625 bunches \checkmark
 - $\rightarrow \sim 2 \times 10 \rightarrow \sim 4 \times 10$

- TDR \mathcal{L} upgrade 1310 \rightarrow_{33} 2625 bunches \checkmark
 - $\sim 2 \times 10 \rightarrow \sim 4 \times 10$
- 10-Hz collision concept 🗙
 - Pol e+ production concept requires 45+150 GeV of line, i.e. 195/250 = 78% of main elinac.
 - ▶ Possibly 6—7 Hz ? (TBC)

- TDR \mathcal{L} upgrade 1310 \rightarrow_{33} 2625 bunches \checkmark
 - $\sim 2 \times 10 \rightarrow \sim 4 \times 10$
- 10-Hz collision concept 🗙
 - Pol e+ production concept requires 45+150 GeV of line, i.e. 195/250 = 78% of main elinac.
 - ▶ Possibly 6—7 Hz ? (TBC)

- TDR \mathcal{L} upgrade 1310 \rightarrow_{33} 2625 bunches \checkmark
 - $\sim 2 \times 10 \rightarrow \sim 4 \times 10$
- 10-Hz collision concept 🗙
 - Pol e+ production concept requires 45+150 GeV of line, i.e. 195/250 = 78% of main elinac.
 - ▶ Possibly 6—7 Hz ? (TBC)
- 300 Hz e-driven source
 - ▶ Also limited to 6—7 Hz (TBC)

- TDR \mathcal{L} upgrade 1310 \rightarrow_{33} 2625 bunches \checkmark
 - $\sim 2 \times 10 \rightarrow \sim 4 \times 10$
- 10-Hz collision concept 🗙
 - Pol e+ production concept requires 45+150 GeV of line, i.e. 195/250 = 78% of main elinac.
 - ▶ Possibly 6—7 Hz ? (TBC)
- 300 Hz e-driven source
 - ▶ Also limited to 6—7 Hz (TBC)

- TDR \mathcal{L} upgrade 1310 \rightarrow_{33} 2625 bunches \checkmark
 - $\sim 2 \times 10 \rightarrow \sim 4 \times 10$
- 10-Hz collision concept 🗙
 - Pol e+ production concept requires 45+150 GeV of line, i.e. 195/250 = 78% of main elinac.
 - ▶ Possibly 6—7 Hz ? (TBC)
- 300 Hz e-driven source
 - ▶ Also limited to 6—7 Hz (TBC)
- Push single-beam parameters
 - ▶ Low BS allows us to reduce sigma_x
 - Simple gamma scaling ($\mathcal{L} \sim 2 \times 10$) has BS $\Delta E/E \sim 0.1\%$.
 - ▶ Reducing sigma_x by factor 2 ($\mathcal{L} \rightarrow 4 \times 10$) increases $\Delta E/E \sim 0.4\%$
 - BUT beware collimation depth and IR beam divergence constraints (theta_x: 84ur → 168ur !!!)

• Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.

• Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.

- Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.
- Bottleneck is polarised positron production
 - Possible split-linac solution for baseline undulator source
 - Major reconfiguration of the accelerator
 - Requires much more detailed study.

- Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.
- Bottleneck is polarised positron production
 - Possible split-linac solution for baseline undulator source
 - Major reconfiguration of the accelerator
 - Requires much more detailed study.

- Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.
- Bottleneck is polarised positron production
 - Possible split-linac solution for baseline undulator source
 - Major reconfiguration of the accelerator
 - Requires much more detailed study.
- No issues for unpolarised positrons (300-Hz e-driven source)

- Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.
- Bottleneck is polarised positron production
 - Possible split-linac solution for baseline undulator source
 - Major reconfiguration of the accelerator
 - Requires much more detailed study.
- No issues for unpolarised positrons (300-Hz e-driven source)

- Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.
- Bottleneck is polarised positron production
 - Possible split-linac solution for baseline undulator source
 - Major reconfiguration of the accelerator
 - Requires much more detailed study.
- No issues for unpolarised positrons (300-Hz e-driven source)
- Possibilities to push \mathcal{L} higher appear quite constrained!

- Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.
- Bottleneck is polarised positron production
 - Possible split-linac solution for baseline undulator source
 - Major reconfiguration of the accelerator
 - Requires much more detailed study.
- No issues for unpolarised positrons (300-Hz e-driven source)
- Possibilities to push \mathcal{L} higher appear quite constrained!

- Z and W running conceptually possible at $2-4\times10^{33}$ and $3-6\times10^{33}$ respectively.
- Bottleneck is polarised positron production
 - Possible split-linac solution for baseline undulator source
 - Major reconfiguration of the accelerator
 - Requires much more detailed study.
- No issues for unpolarised positrons (300-Hz e-driven source)
- Possibilities to push \mathcal{L} higher appear quite constrained!
- Much more detailed studies required.