AHCAL Activities in Tokyo

W. Ootani ICEPP, University of Tokyo

CALICE AHCAL Main Meeting Dec. 10-11, 2015 DESY

Current Activities @Tokyo

- Scintillator material study
- New readout scheme for AHCAL scintillator tile
- Radiation hardness test

Scintillator Material Study: Reminder

- Development of plastic scintillator material of better performance
- Base scintillator material candidates
 - Poly-vinyl toluene (PVT):
 - 😊 Higher light yield
 - Production (casting+machining) is cumbersome.
 - Polystyrene (PS), Estyrene-MS (MS)
 - 😐 Moderate light yield
 - Production (injection moulding) is easier.
- Light yield was measured with AHCAL tile configuration (30×30×3mm³).
- PVT shows the highest light yield (as expected).
- The light yield of PS is reasonably high (80-90% of PVT).
 - PS can be a good candidate material.
- No visible difference in position dependence.
 - \rightarrow No significant difference in both reflection and attenuation
- Further optimisation of scintillator materials is underway especially for PS/MS.

Scintillator Material Study

- Starting with optimisation of polystyrene(PS)-base scintillator
 - Primary fluorescent: p-Terphenyl
 - Secondary fluorescent: POPOP
- Test scintillator cells (30×22×3mm³) are produced with injection molding for different combinations of fluorescent concentrations to find the best production parameters.
- Performance is being measured.

New Scheme for AHCAL Tile Readout: Reminder

- A new AHCAL tile readout scheme, "four-corners readout", is under study.
 - SiPMs are located at vertices of scintillator tiles and detect scintillation light from four adjacent tiles.
 - Tile hit is defined by taking a coincidence on four SiPMs belonging to the tile.
 - SiPM charge is split to hit tiles if shared by adjacent hit tiles.

Advantages

- Reduced random noise by taking a coincidence over multiple SiPMs
- Excellent uniformity and light yield
- Still operational even with dead SiPM(s)
- Reduced number of calibration LEDs

Possible issues

- Cluster smearing due to fake hits
 - Intrinsic fake hit when the tile is surrounded by true hit tiles
 - Fake hit due to light leakage from neighbouring true hit tile
- How to split charge to adjacent hit tiles
- Effect of cluster smearing is being evaluated by MC simulation.
- Optical coupling btw tile and SiPM is being optimised.

For-corners readout

SiPM

Standard readout

.

.

.

•

.

•

.

Simulation Study with Four-corners Readout

• Simulation study on performance of AHCAL with four-corners readout

Implementation of readout scheme

- Implemented in digitisation task of Marlin
- Properties of four-corners readout are implemented
 - Position dependence in inside-tile response
 - Each tile is subdivided into 25 virtual cells (6×6mm² each) to include position-dependent SiPM output at both hit tile and neighbouring tile (light leakage)
 - Taking coincidence to define tile hit
 - Each SiPM is shared by four adjacent tiles. Summed SiPM charge is split into adjacent tiles.

• Implementation completed.

Generate charge at 16 surrounding SiPMs according to measured response and define tile hits

Split SiPM charge to neighbouring tiles

SiPM Radiation Hardness Study

• Radiation damage of SiPM

- Non-ionising process
 - Lattice defect
 - →Additional energy level→increasing DCR/leak current
- Ionising process
 - Damage in interface region btw insulation layer (SiO₂) and Si
 - Modified E-field distribution
 - Additional energy level→increasing DCR/leak current
- Radiation hardness of SiPM is not excellent as shown in previous studies.
- Expected dose @ ILC detector

7

- •ECAL barrel: ~10⁷ n/cm²/10years (LC-DET-2007-013)
- •ECAL endcap (CLIC): < 2×10¹¹ n/cm²/10years (A. Sailer, CLICdp meeting on Oct. 2, 2013)

•Not crucial but might be an issue in extreme conditions

- Radiation hardness of **new generation of MPPC** might be different (hopefully better) since the layer/cell structure and material of insulation layer are modified.
- Also requested by Hamamatsu

I.Nakamura, JPS meeting, Sep. 2008

照射前

3x108 n/cm2

W.Ootani, "AHCAL Activities in Tokyo", AHCAL Main Meeting, Dec. 10-11, 2015 DESY

800

Neutron Irradiation Test

• Tandem accelerator at Kobe University

- •Neutron from nuclear reaction: ${}^{9}Be+d \rightarrow {}^{10}Be+n$
- •Neutron yield: 10⁸ n/sec

•Neutron fluence was measured by calibrated silicon diode (ELMA diode)

•Increase of leak current is calibrated by known flux.

Irradiated samples

- •MPPC (S10352-11-025C)
 - •1×1mm², 25µm-pixel
 - •Old version, no suppression on after-pulsing/cross-talk)
- •MPPC (S12571-11-025C)
 - •1×1mm², 25µm-pixel
 - •Suppression on after-pulsing only, No suppression on cross-talk
- •MPPC (S10943-3186(X))
 - •6×6mm², 50µm-pixel
 - •VUV-sensitive, developed for MEG

•Suppression on after-pulsing only, No suppression on cross-talk

• Total fluence [n/cm²]

```
•2.8×10<sup>9</sup>, 2.8×10<sup>10</sup>, 4.5×10<sup>10</sup>, 1.6×10<sup>11</sup>, 1.4×10<sup>12</sup>
```


Increase of Dark Noise

Measured dark count rate only for the minimum dose (2.8×10⁹ n/cm²).
 Compared leakage current for higher dose

→No significant difference of radiation hardness btw old and new versions

Dose @ 2.8×10⁹ n/cm²

N.B. different Vov for old and new

Gamma Irradiation Test

•Co-60 (16TBq) at JAEA Takasaki

Irradiated samples

- MPPC (S12571-11-025C)
 - •1×1mm², 25µm-pixel
 - Suppression on after-pulsing only, No suppression on cross-talk
- MPPC (S10943-3186(X))
 - 6×6mm², 50µm-pixel
 - VUV-sensitive, developed for MEG
 - Suppression on after-pulsing only, No suppression on cross-talk

•Compared btw only recent MPPCs (with after-pulsing suppression)

Material type of insulation layer is different for S10943-3186(X) (VUV-sensitive).
 Dose conditions

•1.4kGy, 4.1kGy

Gamma Irradiation Test

Compared increase of leakage current after irradiation

Increase of leakage current ~ ×10 @ 1.4kGy

•No significance difference in increase of leakage current btw S12571 and S10943

Next Steps for Radiation Hardness Study

•Extended test of neutron irradiation is planned.

- Neutrons from reactor
- •Research reactor TRIGA at LENA, Pavia

Items to be tested.

- •SiPMs
 - •Most recent MPPC (with suppression on both afterpulsing and crosstalk)
 - •VUV-MPPC
 - SiPM from FBK-AdvanSiD
- Radiation hardness of candidate materials of scintillator (PVT, PS, MS)

Summary

Scintillator material study

- Optimisation of scintillator material especially for PS/MS which can be produced with injection molding.
- Test production has been performed for PS-base scintillator with different fluorescent concentrations

•New AHCAL tile design

- Simulation study to investigate effect of cluster smearing is ongoing.
 Implementation in digitisation task is completed.
- •Optimisation of coupling btw tile and SiPM to maximise light yield and to minimise light leakage to neighbouring tile

Radiation hardness study

- No significant difference for recent version of MPPC (with after-pulsing suppression)
- •Further study is planned using reactor neutrons.

Backup

How It Works

Reconstruction of cell hit and cell charge

- Cell hit is defined by taking a coincidence on four SiPMs belonging to the cell.
- Cell charge is reconstructed by
 - Summing up charges for four SiPMs
 - If SiPM is shared by adjacent cell hits, SiPM charge is split to hit cells.

Possible Implementation

Possible optical coupling of SiPM + Scintillator at cell vertex

Inefficiency

- Small chance of $N_{pe}=0$ at each SiPM if light yield is moderate. No hit is defined when taking a coincidence in this case. \rightarrow inefficiency!
- Measured inefficiency ~ a few %
- Can be mitigated with improvement of light yield or higher threshold for coincidence. Note that optical coupling is not optimised yet.

W.Ootani, "AHCAL Activities in Tokyo", CALICE Collaboration Meeting, Sep.9-11, 2015 MPP, Munich

Cross-talk (Dimple)

- Light leakage from hit cell to neighbouring cell was measured.
 - Sum of # of p.e. detected at three SiPMs in neighbouring cell ~1p.e.
 - Probability of fake hit at neighbouring cell triggered by light leakage (when taking quad coincidence) ~2%

